8 research outputs found
Inhomogeneities in dusty universe - a possible alternative to dark energy?
There have been of late renewed debates on the role of inhomogeneities to
explain the observed late acceleration of the universe. We have looked into the
problem analytically with the help of the well known spherically symmetric but
inhomogeneous Lemaitre-Tolman-Bondi(LTB) model generalised to higher
dimensions. It is observed that in contrast to the claim made by Kolb et al the
presence of inhomogeneities as well as extra dimensions can not reverse the
signature of the deceleration parameter if the matter field obeys the energy
conditions. The well known Raychaudhuri equation also points to the same
result. Without solving the field equations explicitly it can, however, be
shown that although the total deceleration is positive everywhere nevertheless
it does not exclude the possibility of having radial acceleration, even in the
pure dust universe, if the angular scale factor is decelerating fast enough and
vice versa. Moreover it is found that introduction of extra dimensions can not
reverse the scenario. To the contrary it actually helps the decelerating
process.Comment: 14 pages, 4 figure
Effects of inhomogeneities on apparent cosmological observables: "fake" evolving dark energy
Using the exact Lemaitre-Bondi-Tolman solution with a non-vanishing
cosmological constant , we investigate how the presence of a local
spherically-symmetric inhomogeneity can affect apparent cosmological
observables, such as the deceleration parameter or the effective equation of
state of dark energy (DE), derived from the luminosity distance under the
assumption that the real space-time is exactly homogeneous and isotropic. The
presence of a local underdensity is found to produce apparent phantom behavior
of DE, while a locally overdense region leads to apparent quintessence
behavior. We consider relatively small large scale inhomogeneities which today
are not linear and could be seeded by primordial curvature perturbations
compatible with CMB bounds. Our study shows how observations in an
inhomogeneous CDM universe with initial conditions compatible with the
inflationary beginning, if interpreted under the wrong assumption of
homogeneity, can lead to the wrong conclusion about the presence of "fake"
evolving dark energy instead of .Comment: 22 pages, 19 figures,Final version to appear in European Physical
Journal
Cosmological background solutions and cosmological backreactions
The cosmological backreaction proposal, which attempts to account for
observations without a primary dark energy source in the stress-energy tensor,
has been developed and discussed by means of different approaches. Here, we
focus on the concept of cosmological background solutions in order to develop a
framework to study different backreaction proposals.Comment: 14 pages, 5 figures; major changes, replaced to match the version
published in General Relativity and Gravitatio
Is the evidence for dark energy secure?
Several kinds of astronomical observations, interpreted in the framework of
the standard Friedmann-Robertson-Walker cosmology, have indicated that our
universe is dominated by a Cosmological Constant. The dimming of distant Type
Ia supernovae suggests that the expansion rate is accelerating, as if driven by
vacuum energy, and this has been indirectly substantiated through studies of
angular anisotropies in the cosmic microwave background (CMB) and of spatial
correlations in the large-scale structure (LSS) of galaxies. However there is
no compelling direct evidence yet for (the dynamical effects of) dark energy.
The precision CMB data can be equally well fitted without dark energy if the
spectrum of primordial density fluctuations is not quite scale-free and if the
Hubble constant is lower globally than its locally measured value. The LSS data
can also be satisfactorily fitted if there is a small component of hot dark
matter, as would be provided by neutrinos of mass 0.5 eV. Although such an
Einstein-de Sitter model cannot explain the SNe Ia Hubble diagram or the
position of the `baryon acoustic oscillation' peak in the autocorrelation
function of galaxies, it may be possible to do so e.g. in an inhomogeneous
Lemaitre-Tolman-Bondi cosmology where we are located in a void which is
expanding faster than the average. Such alternatives may seem contrived but
this must be weighed against our lack of any fundamental understanding of the
inferred tiny energy scale of the dark energy. It may well be an artifact of an
oversimplified cosmological model, rather than having physical reality.Comment: 12 pages, 5 figures; to appear in a special issue of General
Relativity and Gravitation, eds. G.F.R. Ellis et al; Changes: references
reformatted in journal style - text unchange
Dark energy as a mirage
Motivated by the observed cosmic matter distribution, we present the
following conjecture: due to the formation of voids and opaque structures, the
average matter density on the path of the light from the well-observed objects
changes from Omega_M ~ 1 in the homogeneous early universe to Omega_M ~ 0 in
the clumpy late universe, so that the average expansion rate increases along
our line of sight from EdS expansion Ht ~ 2/3 at high redshifts to free
expansion Ht ~ 1 at low redshifts. To calculate the modified observable
distance-redshift relations, we introduce a generalized Dyer-Roeder method that
allows for two crucial physical properties of the universe: inhomogeneities in
the expansion rate and the growth of the nonlinear structures. By treating the
transition redshift to the void-dominated era as a free parameter, we find a
phenomenological fit to the observations from the CMB anisotropy, the position
of the baryon oscillation peak, the magnitude-redshift relations of type Ia
supernovae, the local Hubble flow and the nucleosynthesis, resulting in a
concordant model of the universe with 90% dark matter, 10% baryons, no dark
energy, 15 Gyr as the age of the universe and a natural value for the
transition redshift z_0=0.35. Unlike a large local void, the model respects the
cosmological principle, further offering an explanation for the late onset of
the perceived acceleration as a consequence of the forming nonlinear
structures. Additional tests, such as quantitative predictions for angular
deviations due to an anisotropic void distribution and a theoretical derivation
of the model, can vindicate or falsify the interpretation that light
propagation in voids is responsible for the perceived acceleration.Comment: 33 pages, 2 figs; v2: minor clarifications, results unchanged; v3:
matches the version published in General Relativity and Gravitatio