24 research outputs found

    Automatic lane detection in chromatography images

    Get PDF
    This paper proposes a method for automating the detection of lanes in Thin-Layer Chromatography images. Our approach includes a preprocessing step to detect the image region of interest, followed by background estimation and removal. This image is then projected onto the horizontal direction to integrate the information into a one-dimensional profile. A smoothing filter is applied to this profile and the outcome is the input of the lane detection process, which is performed in three phases. The first one aims at obtaining an initial set of candidate lanes that are further validated or removed in the second phase. The last phase is a refinement step that allows the inclusion of lanes that are not clearly distinguishable in the profile and that were not included in the initial set. The method was evaluated in 66 chromatography images and achieved values of recall, precision and F ß -measure of 97.0%, 99.4% and 98.2%, respectively

    Morphological identification of animal hairs: Myths and misconceptions, possibilities and pitfalls

    Get PDF
    The examination of hair collected from crime scenes is an important and highly informative discipline relevant to many forensic investigations. However, the forensic identification of animal (non-human) hairs requires different skill sets and competencies to those required for human hair comparisons. The aim of this is paper is not only to highlight the intrinsic differences between forensic human hair comparison and forensic animal hair identification, but also discuss the utility and reliability of the two in the context of possibilities and pitfalls. It also addresses and dispels some of the more popular myths and misconceptions surrounding the microscopical examination of animal hairs. Furthermore, future directions of this discipline are explored through the proposal of recommendations for minimum standards for the morphological identification of animal hairs and the significance of the newly developed guidelines by SWGWILD is discussed

    Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.

    Get PDF
    Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS

    Subluminal to superluminal propagation in a left-handed medium

    Get PDF
    In this paper we report large group delays in the propagation of narrow-band pulses through a dispersive medium with both dielectric function and magnetic permeability negative. We show how the numerical results can be understood in terms of the phase time as calculated from the complex transmission amplitude. We also demonstrate superluminal passage and saturation of phase time in the same material albeit in a different spectral region.Peer reviewedPhysic

    Video and Imaging, 2013-2016

    No full text
    In this review, the most important developments are presented for the following general fields of expertise: : (1) Biometric analysis of image material, (2) Detection of image manipulation, (3) Camera source identification, (4) Video image processing and Image search

    Identity Theft

    No full text
    Identity theft or identity fraud is often seen in combination with personal personal identifiers that people possess for getting access to a system or a physical area. The personal personal identifier might be something a person knows or owns. In this article, the most common techniques of identity theft and how these are investigated in forensic terms are discussed. Examples are given for identity theft, such as skimming and fishing

    Morphological identification of animal hairs: Myths and misconceptions, possibilities and pitfalls

    Get PDF
    The examination of hair collected from crime scenes is an important and highly informative discipline relevant to many forensic investigations. However, the forensic identification of animal (non-human) hairs requires different skill sets and competencies to those required for human hair comparisons. The aim of this is paper is not only to highlight the intrinsic differences between forensic human hair comparison and forensic animal hair identification, but also discuss the utility and reliability of the two in the context of possibilities and pitfalls. It also addresses and dispels some of the more popular myths and misconceptions surrounding the microscopical examination of animal hairs. Furthermore, future directions of this discipline are explored through the proposal of recommendations for minimum standards for the morphological identification of animal hairs and the significance of the newly developed guidelines by SWGWILD is discussed
    corecore