42 research outputs found

    Pervasive and intelligent decision support in Intensive Medicine – the complete picture

    Get PDF
    Series : Lecture notes in computer science (LNCS), vol. 8649In the Intensive Care Units (ICU) it is notorious the high number of data sources available. This situation brings more complexity to the way of how a professional makes a decision based on information provided by those data sources. Normally, the decisions are based on empirical knowledge and common sense. Often, they don’t make use of the information provided by the ICU data sources, due to the difficulty in understanding them. To overcome these constraints an integrated and pervasive system called INTCare has been deployed. This paper is focused in presenting the system architecture and the knowledge obtained by each one of the decision modules: Patient Vital Signs, Critical Events, ICU Medical Scores and Ensemble Data Mining. This system is able to make hourly predictions in terms of organ failure and outcome. High values of sensitivity where reached, e.g. 97.95% for the cardiovascular system, 99.77% for the outcome. In addition, the system is prepared for tracking patients’ critical events and for evaluating medical scores automatically and in real-time.(undefined

    From Social Data Mining to Forecasting Socio-Economic Crisis

    Full text link
    Socio-economic data mining has a great potential in terms of gaining a better understanding of problems that our economy and society are facing, such as financial instability, shortages of resources, or conflicts. Without large-scale data mining, progress in these areas seems hard or impossible. Therefore, a suitable, distributed data mining infrastructure and research centers should be built in Europe. It also appears appropriate to build a network of Crisis Observatories. They can be imagined as laboratories devoted to the gathering and processing of enormous volumes of data on both natural systems such as the Earth and its ecosystem, as well as on human techno-socio-economic systems, so as to gain early warnings of impending events. Reality mining provides the chance to adapt more quickly and more accurately to changing situations. Further opportunities arise by individually customized services, which however should be provided in a privacy-respecting way. This requires the development of novel ICT (such as a self- organizing Web), but most likely new legal regulations and suitable institutions as well. As long as such regulations are lacking on a world-wide scale, it is in the public interest that scientists explore what can be done with the huge data available. Big data do have the potential to change or even threaten democratic societies. The same applies to sudden and large-scale failures of ICT systems. Therefore, dealing with data must be done with a large degree of responsibility and care. Self-interests of individuals, companies or institutions have limits, where the public interest is affected, and public interest is not a sufficient justification to violate human rights of individuals. Privacy is a high good, as confidentiality is, and damaging it would have serious side effects for society.Comment: 65 pages, 1 figure, Visioneer White Paper, see http://www.visioneer.ethz.c

    Outlier detection and classification in sensor data streams for proactive decision support systems

    Get PDF
    A paper has a deal with the problem of quality assessment in sensor data streams accumulated by proactive decision support systems. The new problem is stated where outliers need to be detected and to be classified according to their nature of origin. There are two types of outliers defined; the first type is about misoperations of a system and the second type is caused by changes in the observed system behavior due to inner and external influences. The proposed method is based on the data-driven forecast approach to predict the values in the incoming data stream at the expected time. This method includes the forecasting model and the clustering model. The forecasting model predicts a value in the incoming data stream at the expected time to find the deviation between a real observed value and a predicted one. The clustering method is used for taxonomic classification of outliers. Constructive neural networks models (CoNNS) and evolving connectionists systems (ECS) are used for prediction of sensors data. There are two real world tasks are used as case studies. The maximal values of accuracy are 0.992 and 0.974, and F1 scores are 0.967 and 0.938, respectively, for the first and the second tasks. The conclusion contains findings how to apply the proposed method in proactive decision support systems

    Learning from medical data streams: an introduction

    No full text
    Clinical practice and research are facing a new challenge created by the rapid growth of health information science and technology, and the complexity and volume of biomedical data. Machine learning from medical data streams is a recent area of research that aims to provide better knowledge extraction and evidence-based clinical decision support in scenarios where data are produced as a continuous flow. This year's edition of AIME, the Conference on Artificial Intelligence in Medicine, enabled the sound discussion of this area of research, mainly by the inclusion of a dedicated workshop. This paper is an introduction to LEMEDS, the Learning from Medical Data Streams workshop, which highlights the contributed papers, the invited talk and expert panel discussion, as well as related papers accepted to the main conference
    corecore