3,425 research outputs found
Electromagnetic vibration energy harvesting using an improved Halbach array
This paper reports an electromagnetic vibration energy harvester using an improved Halbach array. A Halbach array is a specific arrangement of permanent magnets that concentrates the magnetic field on one side of the array while cancelling the field on the other side to almost zero. Previous research showed that although the Halbach array has higher magnetic field density compared to normal magnet layouts, its magnetic flux gradient is not as high. Thus, output powers of energy harvesters with Halbach arrays were found to be less than those with normal magnet layouts. This paper proposes an improved Halbach array that achieves both high magnetic field strength and magnetic flux gradient. Test results showed that the improved Halbach array can increase the output power of energy harvesters by a factor of seven compared to the previous Halbach design and by a factor of 1.5 compared to the normal configuration
Recommended from our members
High resolution forecast models of water vapour over mountains: comparison of results from the UM and MERIS
Propagation delay due to variable tropospheric water vapor (WV) is one of the most intractable problems for radar interferometry, particularly over mountains. The WV field can be simulated by an atmospheric model, and the difference between the two fields is used to correct the radar interferogram. Here, we report our use of the U.K. Met Office Unified Model in a nested mode to produce high-resolution forecast fields for the 3-km-high Mount Etna volcano. The simulated precipitablewater field is validated against that retrieved from the Medium Resolution Imaging Spectrometer (MERIS) radiometer on the Envisat satellite, which has a resolution of 300 m. Two case studies, one from winter (November 24, 2004) and one from summer (June 25, 2005), show that the mismatch between the model and the MERIS fields (rms = 1.1 and 1.6 mm, respectively) is small. One of the main potential sources of error in the models is the timing of the WV field simulation. We show that long-wavelength upper tropospheric troughs of low WV could be identified in both the model output and Meteosat WV imagery for the November 24, 2004 case and used to choose the best time of model output. © 2007 IEEE
Three-dimensional flow structures and vorticity control in fish-like swimming
We employ a three-dimensional, nonlinear inviscid numerical method, in conjunction
with experimental data from live fish and from a fish-like robotic mechanism, to
establish the three-dimensional features of the flow around a fish-like body swimming
in a straight line, and to identify the principal mechanisms of vorticity control
employed in fish-like swimming. The computations contain no structural model for
the fish and hence no recoil correction. First, we show the near-body flow structure
produced by the travelling-wave undulations of the bodies of a tuna and a giant
danio. As revealed in cross-sectional planes, for tuna the flow contains dominant
features resembling the flow around a two-dimensional oscillating plate over most
of the length of the fish body. For the giant danio, on the other hand, a mixed
longitudinal-transverse structure appears along the hind part of the body. We also
investigate the interaction of the body-generated vortices with the oscillating caudal
fin and with tail-generated vorticity. Two distinct vorticity interaction modes are
identified: the first mode results in high thrust and is generated by constructive
pairing of body-generated vorticity with same-sign tail-generated vorticity, resulting
in the formation of a strong thrust wake; the second corresponds to high propulsive
efficiency and is generated by destructive pairing of body-generated vorticity with
opposite-sign tail-generated vorticity, resulting in the formation of a weak thrust
wake
Future Directions in Parity Violation: From Quarks to the Cosmos
I discuss the prospects for future studies of parity-violating (PV)
interactions at low energies and the insights they might provide about open
questions in the Standard Model as well as physics that lies beyond it. I cover
four types of parity-violating observables: PV electron scattering; PV hadronic
interactions; PV correlations in weak decays; and searches for the permanent
electric dipole moments of quantum systems.Comment: Talk given at PAVI 06 workshop on parity-violating interactions,
Milos, Greece (May, 2006); 10 page
Parity violation in nuclear systems
Parity violation in nuclear systems is reviewed. A few ingredients relevant
to the description of the parity-violating nucleon-nucleon force in terms of
meson exchanges are reminded. Effects in nuclear systems are then considered.
They involve pp scattering, some complex nuclei and the deuteron system.Comment: 4 pages, to be published in the proceedings of the worksho
Electroweak Radiative Corrections to Parity-Violating Electroexcitation of the
We analyze the degree to which parity-violating (PV) electroexcitation of the
resonance may be used to extract the weak neutral axial vector
transition form factors. We find that the axial vector electroweak radiative
corrections are large and theoretically uncertain, thereby modifying the
nominal interpretation of the PV asymmetry in terms of the weak neutral form
factors. We also show that, in contrast to the situation for elastic electron
scattering, the axial PV asymmetry does not vanish at the photon
point as a consequence of a new term entering the radiative corrections. We
argue that an experimental determination of these radiative corrections would
be of interest for hadron structure theory, possibly shedding light on the
violation of Hara's theorem in weak, radiative hyperon decays.Comment: RevTex, 76 page
Anisotropic vortex pinning in superconductors with a square array of rectangular submicron holes
We investigate vortex pinning in thin superconducting films with a square
array of rectangular submicron holes ("antidots"). Two types of antidots are
considered: antidots fully perforating the superconducting film, and "blind
antidots", holes that perforate the film only up to a certain depth. In both
systems, we observe a distinct anisotropy in the pinning properties, reflected
in the critical current Ic, depending on the direction of the applied
electrical current: parallel to the long side of the antidots or perpendicular
to it. Although the mechanism responsible for the effect is very different in
the two systems, they both show a higher critical current and a sharper
IV-transition when the current is applied along the long side of the
rectangular antidots
What Do We Know About the Strange Magnetic Radius?
We analyze the q^2-dependence of the strange magnetic form factor, \GMS(q^2),
using heavy baryon chiral perturbation theory (HBChPT) and dispersion
relations. We find that in HBChPT a significant cancellation occurs between the
O(p^2) and O(p^3) loop contributions. Consequently, the slope of \GMS at the
origin displays an enhanced sensitivity to an unknown O(p^3) low-energy
constant. Using dispersion theory, we estimate the magnitude of this constant,
show that it may have a natural size, and conclude that the low-q^2 behavior of
\GMS could be dominated by nonperturbative physics. We also discuss the
implications for the interpretation of parity-violating electron scattering
measurements used to measure \GMS(q^2).Comment: 9 pages, Revtex, 2 ps figure
Don't Forget to Measure
This talk explores our lack of knowledge of the strange quark contribution to
the nucleon spin, . Data on from inclusive and
semi-inclusive polarized deep-inelastic scattering will be reviewed, followed
by a discussion of how the ongoing program of parity-violating elastic
electron-nucleon scattering experiments, that seek out the strange
electromagnetic form factors of the nucleon, need to have an estimate for the
strange axial form factor to carry out that program, and how the value of
extracted from the DIS experiments has filled that role. It is shown
that elastic , , and parity-violating data can
be combined to extract the strange electric, magnetic axial form factors
simultaneously. A proposed experiment that could address this important issue
if briefly previewed.Comment: 4 pages, to appear in proceedings in PAVI04, Eur. Jour. Phy
- âŠ