215 research outputs found

    A global map to aid the identification and screening of critical habitat for marine industries

    Get PDF
    Marine industries face a number of risks that necessitate careful analysis prior to making decisions on the siting of operations and facilities. An important emerging regulatory framework on environmental sustainability for business operations is the International Finance Corporation’s Performance Standard 6 (IFC PS6). Within PS6, identification of biodiversity significance is articulated through the concept of “Critical Habitat”, a definition developed by the IFC and detailed through criteria aligned with those that support internationally accepted biodiversity designations. No publicly available tools have been developed in either the marine or terrestrial realm to assess the likelihood of sites or operations being located within PS6-defined Critical Habitat. This paper presents a starting point towards filling this gap in the form of a preliminary global map that classifies more than 13 million km2 of marine and coastal areas of importance for biodiversity (protected areas, Key Biodiversity Areas [KBA], sea turtle nesting sites, cold- and warm-water corals, seamounts, seagrass beds, mangroves, saltmarshes, hydrothermal vents and cold seeps) based on their overlap with Critical Habitat criteria, as defined by IFC. In total, 5798×103 km2 (1.6%) of the analysis area (global ocean plus coastal land strip) were classed as Likely Critical Habitat, and 7526×103 km2 (2.1%) as Potential Critical Habitat; the remainder (96.3%) were Unclassified. The latter was primarily due to the paucity of biodiversity data in marine areas beyond national jurisdiction and/or in deep waters, and the comparatively fewer protected areas and KBAs in these regions. Globally, protected areas constituted 65.9% of the combined Likely and Potential Critical Habitat extent, and KBAs 29.3%, not accounting for the overlap between these two features. Relative Critical Habitat extent in Exclusive Economic Zones varied dramatically between countries. This work is likely to be of particular use for industries operating in the marine and coastal realms as an early screening aid prior to in situ Critical Habitat assessment; to financial institutions making investment decisions; and to those wishing to implement good practice policies relevant to biodiversity management. Supplementary material (available online) includes other global datasets considered, documentation and justification of biodiversity feature classification, detail of IFC PS6 criteria/scenarios, and coverage calculations

    The dS/CFT Correspondence and the Big Smash

    Get PDF
    Recent observations suggest that the cosmological equation-of-state parameter w is close to -1. To say this is to imply that w could be slightly less than -1, which leads to R.Caldwell's "Phantom cosmologies". These often have the property that they end in a "Big Smash", a final singularity in which the Universe is destroyed in a finite proper time by excessive *expansion*. We show that, classically, this fate is not inevitable: there exist Smash-free Phantom cosmologies, obtained by a suitable perturbation of the deSitter equation of state, in which the spacetime is in fact asymptotically deSitter. [Contrary to popular belief, such cosmologies, which violate the Dominant Energy Condition, do not necessarily violate causality.] We also argue, however, that the physical interpretation of these classically acceptable spacetimes is radically altered by ``holography'', as manifested in the dS/CFT correspondence. It is shown that, if the boundary CFTs have conventional properties, then recent ideas on "time as an inverse renormalization group flow" can be used to rule out these cosmologies. Very recently, however, it has been argued that the CFTs in dS/CFT are of a radically unconventional form, and this opens up the possibility that Smash-free Phantom spacetimes offer a simple model of a "bouncing" cosmology in which the quantum-mechanical entanglement of the field theories in the infinite past and future plays an essential role.Comment: 22 pages, clarification of triple analytic continuation, additional Comments added in the light of hep-th/020724

    Oxidised cosmic acceleration

    Full text link
    We give detailed proofs of several new no-go theorems for constructing flat four-dimensional accelerating universes from warped dimensional reduction. These new theorems improve upon previous ones by weakening the energy conditions, by including time-dependent compactifications, and by treating accelerated expansion that is not precisely de Sitter. We show that de Sitter expansion violates the higher-dimensional null energy condition (NEC) if the compactification manifold M is one-dimensional, if its intrinsic Ricci scalar R vanishes everywhere, or if R and the warp function satisfy a simple limit condition. If expansion is not de Sitter, we establish threshold equation-of-state parameters w below which accelerated expansion must be transient. Below the threshold w there are bounds on the number of e-foldings of expansion. If M is one-dimensional or R everywhere vanishing, exceeding the bound implies the NEC is violated. If R does not vanish everywhere on M, exceeding the bound implies the strong energy condition (SEC) is violated. Observationally, the w thresholds indicate that experiments with finite resolution in w can cleanly discriminate between different models which satisfy or violate the relevant energy conditions.Comment: v2: corrections, references adde

    A statistical framework for assessing pharmacological responses and biomarkers using uncertainty estimates

    Get PDF
    High-throughput testing of drugs across molecular-characterised cell lines can identify candidate treatments and discover biomarkers. However, the cells’ response to a drug is typically quantified by a summary statistic from a best-fit dose-response curve, whilst neglecting the uncertainty of the curve fit and the potential variability in the raw readouts. Here, we model the experimental variance using Gaussian Processes, and subsequently, leverage uncertainty estimates to identify associated biomarkers with a new Bayesian framework. Applied to in vitro screening data on 265 compounds across 1074 cancer cell lines, our models identified 24 clinically established drug-response biomarkers, and provided evidence for six novel biomarkers by accounting for association with low uncertainty. We validated our uncertainty estimates with an additional drug screen of 26 drugs, 10 cell lines with 8 to 9 replicates. Our method is applicable to any dose-response data without replicates, and improves biomarker discovery for precision medicine

    Nonlocal braneworld action: an alternative to Kaluza-Klein description

    Full text link
    We construct the nonlocal braneworld action in the two-brane Randall-Sundrum model in a holographic setup alternative to Kaluza-Klein description: the action is written as a functional of the two metric and radion fields on the branes. This action effectively describes the dynamics of the gravitational field both on the branes and in the bulk in terms of the brane geometries directly accessible for observations. Its nonlocal form factors incorporate the cumulative effect of the bulk Kaluza-Klein modes. We also consider the reduced version of this action obtained by integrating out the fields on the negative-tension brane invisible from the viewpoint of the Planckian brane observer. This effective action features a nontrivial transition (AdS flow) between the local and nonlocal phases of the theory associated with the limits of small and large interbrane separation. Our results confirm a recently proposed braneworld scenario with diverging (repulsive) branes and suggest possible new implications of this phase transition in brane cosmology.Comment: 33 pages, title changed, the focus of discussion is shifted to nonlocality properties of Weyl-squared terms in braneworld action and phase transitions between local and nonlocal phases of the theory, to appear in Phys. Rev.

    Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σttÂŻ) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at sqrt (s) = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fb−1 of pp collisions at View the MathML sources=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. The data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions

    Search for strong gravity in multijet final states produced in pp collisions at √s=13 TeV using the ATLAS detector at the LHC

    Get PDF
    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (HT) greater than 1TeV. No excess is seen at large HT and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with HT > 5.8 TeV are excluded. Limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
    • 

    corecore