14 research outputs found

    Partner independent fusion gene detection by multiplexed CRISPR-Cas9 enrichment and long read nanopore sequencing

    Get PDF
    Fusion genes are hallmarks of various cancer types and important determinants for diagnosis, prognosis and treatment. Fusion gene partner choice and breakpoint-position promiscuity restricts diagnostic detection, even for known and recurrent configurations. Here, we develop FUDGE (FUsion Detection from Gene Enrichment) to accurately and impartially identify fusions. FUDGE couples target-selected and strand-specific CRISPR-Cas9 activity for fusion gene driver enrichment - without prior knowledge of fusion partner or breakpoint-location - to long read nanopore sequencing with the bioinformatics pipeline NanoFG. FUDGE has flexible target-loci choices and enables multiplexed enrichment for simultaneous analysis of several genes in multiple samples in one sequencing run. We observe on-average 665 fold breakpoint-site enrichment and identify nucleotide resolution fusion breakpoints within 2 days. The assay identifies cancer cell line and tumor sample fusions irrespective of partner gene or breakpoint-position. FUDGE is a rapid and versatile fusion detection assay for diagnostic pan-cancer fusion detection

    A systematic analysis of oncogenic gene fusions in primary colon cancer

    Get PDF
    Genomic rearrangements that give rise to oncogenic gene fusions can offer actionable targets for cancer therapy. Here we present a systematic analysis of oncogenic gene fusions among a clinically well-characterized, prospectively collected set of 278 primary colon cancers spanning diverse tumor stages and clinical outcomes. Gene fusions and somatic genetic variations were identified in fresh frozen clinical specimens by Illumina RNA-sequencing, the STAR fusion gene detection pipeline, and GATK RNA-seq variant calling. We considered gene fusions to be pathogenically relevant when recurrent, producing divergent gene expression (outlier analysis), or as functionally important (e.g., kinase fusions). Overall, 2.5% of all specimens were defined as harboring a relevant gene fusion (kinase fusions 1.8%). Novel configurations of BRAF, NTRK3, and RET gene fusions resulting from chromosomal translocations were identified. An R-spondin fusion was found in only one tumor (0.35%), much less than an earlier reported frequency of 10% in colorectal cancers. We also found a novel fusion involving USP9X-ERAS formed by chromothripsis and leading to high expression of ERAS, a constitutively active RAS protein normally expressed only in embryonic stem cells. This USP9X–ERAS fusion appeared highly oncogenic on the basis of its ability to activate AKT signaling. Oncogenic fusions were identified only in lymph node–negative tumors that lacked BRAF or KRAS mutations. In summary, we identified several novel oncogenic gene fusions in colorectal cancer that may drive malignant development and offer new targets for personalized therapy

    Strategies for Controlled Placement of Nanoscale Building Blocks

    Get PDF
    The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others

    Musculoskeletal infection in orthopaedic trauma: Assessment of the 2018 international consensus meeting on musculoskeletal infection

    No full text
    Fracture-related infections (FRIs) are among the most common complications following fracture fixation, and they have a huge economic and functional impact on patients. Because consensus guidelines with respect to prevention, diagnosis, and treatment of this major complication are scarce, delegates from different countries gathered in Philadelphia in July 2018 as part of the Second International Consensus Meeting (ICM) on Musculoskeletal Infection. This paper summarizes the discussion and recommendations from that consensus meeting, using the Delphi technique, with a focus on FRIs. A standardized definition that was based on diagnostic criteria was endorsed, which will hopefully improve reporting and research on FRIs in the future. Furthermore, this paper provides a grade of evidence (strong, moderate, limited, or consensus) for strategies and practices that prevent and treat infection. The grade of evidence is based on the quality of evidence as utilized by the American Academy of Orthopaedic Surgeons. The guidelines presented herein focus not only on the appropriate use of antibiotics, but also on practices for the timing of fracture fixation, soft-tissue coverage, and bone defect and hardware management. We hope that this summary as well as the full document by the International Consensus Group are utilized by those who are charged with musculoskeletal care internationally to optimize their management strategies for the prevention and treatment of FRIs. COPYRIGHT © 2020 BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATE
    corecore