63 research outputs found
Efficient design of tall tapered feeders
Toowoomba Foundry is seeking help with the design of tall tapered feeders, which supply extra molten iron to poured castings as they cool. There is a problem with the reliability of the feeders, particularly for thicker castings of the newer spheroidal graphite irons. An effective feeder remains molten until the casting has set. The setting of the melt in the feeder is delayed by making it large enough to retain its heat for longer than the casting, and by placing it close to the thermal centre of the casting. So a larger feeder is more reliable. But any metal remaining in the feeder is recycled, and has an associated energy cost. If a feeder is too small, it will set too soon, and the casting will have unwanted holes in it that may require the entire casting to be recycled. Thus there is a tension between making the feeder smaller so as to minimise recycled metal, and having the feeder large enough that the casting is good.
Existing design methods use purely conductive models of heat transport. We investigate the relevance of convection in the cooling feeder, and set up a boundary-layer model of flow driven by density differences. We find that convection is a significant factor in the design of a feeder, effectively maintaining constant temperature across it. The height of the feeder is important mainly in providing the driving force for this flow
Demonstrating the Source of Inherent Instability in NiFe LDH Based OER Electrocatalysts
Nickel iron layered double hydroxides are known to be one of the most highly active catalysts for the oxygen evolution reaction in alkaline conditions. The high electrocatalytic activity of the material however cannot be sustained within the active voltage window on timescales consistent with commercial requirements. The goal of this work is to identify and prove the source of inherent catalyst instability by tracking changes in the material during OER activity. By combining in situ and ex situ Raman analyses we elucidate long term effects on the catalyst performance from a changing crystallographic phase. In particular, we attribute electrochemically stimulated compositional degradation at active sites as the principal cause of the sharp loss of activity from NiFe LDHs shortly after the alkaline cell is turned on. EDX, XPS, and EELS analyses performed after OER also reveal noticeable leaching of Fe metals compared to Ni, principally from highly active edge sites. In addition, post cycle analysis identified a ferrihydrite by product formed from the leached Fe. Density functional theory calculations shed light on the thermodynamic driving force for the leaching of Fe metals and propose a dissolution pathway which involves [FeO4]2 amp; 8722; removal at relevant OER potential
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
A novel formulation of inhaled sodium cromoglicate (PA101) in idiopathic pulmonary fibrosis and chronic cough: a randomised, double-blind, proof-of-concept, phase 2 trial
Background Cough can be a debilitating symptom of idiopathic pulmonary fibrosis (IPF) and is difficult to treat. PA101 is a novel formulation of sodium cromoglicate delivered via a high-efficiency eFlow nebuliser that achieves significantly higher drug deposition in the lung compared with the existing formulations. We aimed to test the efficacy and safety of inhaled PA101 in patients with IPF and chronic cough and, to explore the antitussive mechanism of PA101, patients with chronic idiopathic cough (CIC) were also studied. Methods This pilot, proof-of-concept study consisted of a randomised, double-blind, placebo-controlled trial in patients with IPF and chronic cough and a parallel study of similar design in patients with CIC. Participants with IPF and chronic cough recruited from seven centres in the UK and the Netherlands were randomly assigned (1:1, using a computer-generated randomisation schedule) by site staff to receive PA101 (40 mg) or matching placebo three times a day via oral inhalation for 2 weeks, followed by a 2 week washout, and then crossed over to the other arm. Study participants, investigators, study staff, and the sponsor were masked to group assignment until all participants had completed the study. The primary efficacy endpoint was change from baseline in objective daytime cough frequency (from 24 h acoustic recording, Leicester Cough Monitor). The primary efficacy analysis included all participants who received at least one dose of study drug and had at least one post-baseline efficacy measurement. Safety analysis included all those who took at least one dose of study drug. In the second cohort, participants with CIC were randomly assigned in a study across four centres with similar design and endpoints. The study was registered with ClinicalTrials.gov (NCT02412020) and the EU Clinical Trials Register (EudraCT Number 2014-004025-40) and both cohorts are closed to new participants. Findings Between Feb 13, 2015, and Feb 2, 2016, 24 participants with IPF were randomly assigned to treatment groups. 28 participants with CIC were enrolled during the same period and 27 received study treatment. In patients with IPF, PA101 reduced daytime cough frequency by 31·1% at day 14 compared with placebo; daytime cough frequency decreased from a mean 55 (SD 55) coughs per h at baseline to 39 (29) coughs per h at day 14 following treatment with PA101, versus 51 (37) coughs per h at baseline to 52 (40) cough per h following placebo treatment (ratio of least-squares [LS] means 0·67, 95% CI 0·48–0·94, p=0·0241). By contrast, no treatment benefit for PA101 was observed in the CIC cohort; mean reduction of daytime cough frequency at day 14 for PA101 adjusted for placebo was 6·2% (ratio of LS means 1·27, 0·78–2·06, p=0·31). PA101 was well tolerated in both cohorts. The incidence of adverse events was similar between PA101 and placebo treatments, most adverse events were mild in severity, and no severe adverse events or serious adverse events were reported. Interpretation This study suggests that the mechanism of cough in IPF might be disease specific. Inhaled PA101 could be a treatment option for chronic cough in patients with IPF and warrants further investigation
Post-acute COVID-19 neuropsychiatric symptoms are not associated with ongoing nervous system injury
A proportion of patients infected with severe acute respiratory syndrome coronavirus 2 experience a range of neuropsychiatric symptoms months after infection, including cognitive deficits, depression and anxiety. The mechanisms underpinning such symptoms remain elusive. Recent research has demonstrated that nervous system injury can occur during COVID-19. Whether ongoing neural injury in the months after COVID-19 accounts for the ongoing or emergent neuropsychiatric symptoms is unclear. Within a large prospective cohort study of adult survivors who were hospitalized for severe acute respiratory syndrome coronavirus 2 infection, we analysed plasma markers of nervous system injury and astrocytic activation, measured 6 months post-infection: neurofilament light, glial fibrillary acidic protein and total tau protein. We assessed whether these markers were associated with the severity of the acute COVID-19 illness and with post-acute neuropsychiatric symptoms (as measured by the Patient Health Questionnaire for depression, the General Anxiety Disorder assessment for anxiety, the Montreal Cognitive Assessment for objective cognitive deficit and the cognitive items of the Patient Symptom Questionnaire for subjective cognitive deficit) at 6 months and 1 year post-hospital discharge from COVID-19. No robust associations were found between markers of nervous system injury and severity of acute COVID-19 (except for an association of small effect size between duration of admission and neurofilament light) nor with post-acute neuropsychiatric symptoms. These results suggest that ongoing neuropsychiatric symptoms are not due to ongoing neural injury
Long COVID and cardiovascular disease: a prospective cohort study
Background
Pre-existing cardiovascular disease (CVD) or cardiovascular risk factors have been associated with an increased risk of complications following hospitalisation with COVID-19, but their impact on the rate of recovery following discharge is not known.
Objectives
To determine whether the rate of patient-perceived recovery following hospitalisation with COVID-19 was affected by the presence of CVD or cardiovascular risk factors.
Methods
In a multicentre prospective cohort study, patients were recruited following discharge from the hospital with COVID-19 undertaking two comprehensive assessments at 5 months and 12 months. Patients were stratified by the presence of either CVD or cardiovascular risk factors prior to hospitalisation with COVID-19 and compared with controls with neither. Full recovery was determined by the response to a patient-perceived evaluation of full recovery from COVID-19 in the context of physical, physiological and cognitive determinants of health.
Results
From a total population of 2545 patients (38.8% women), 472 (18.5%) and 1355 (53.2%) had CVD or cardiovascular risk factors, respectively. Compared with controls (n=718), patients with CVD and cardiovascular risk factors were older and more likely to have had severe COVID-19. Full recovery was significantly lower at 12 months in patients with CVD (adjusted OR (aOR) 0.62, 95% CI 0.43 to 0.89) and cardiovascular risk factors (aOR 0.66, 95% CI 0.50 to 0.86).
Conclusion
Patients with CVD or cardiovascular risk factors had a delayed recovery at 12 months following hospitalisation with COVID-19. Targeted interventions to reduce the impact of COVID-19 in patients with cardiovascular disease remain an unmet need
Accelarated immune ageing is associated with COVID-19 disease severity
Background
The striking increase in COVID-19 severity in older adults provides a clear example of immunesenescence, the age-related remodelling of the immune system. To better characterise the association between convalescent immunesenescence and acute disease severity, we determined the immune phenotype of COVID-19 survivors and non-infected controls.
Results
We performed detailed immune phenotyping of peripheral blood mononuclear cells isolated from 103 COVID-19 survivors 3–5 months post recovery who were classified as having had severe (n = 56; age 53.12 ± 11.30 years), moderate (n = 32; age 52.28 ± 11.43 years) or mild (n = 15; age 49.67 ± 7.30 years) disease and compared with age and sex-matched healthy adults (n = 59; age 50.49 ± 10.68 years). We assessed a broad range of immune cell phenotypes to generate a composite score, IMM-AGE, to determine the degree of immune senescence. We found increased immunesenescence features in severe COVID-19 survivors compared to controls including: a reduced frequency and number of naïve CD4 and CD8 T cells (p < 0.0001); increased frequency of EMRA CD4 (p < 0.003) and CD8 T cells (p < 0.001); a higher frequency (p < 0.0001) and absolute numbers (p < 0.001) of CD28−ve CD57+ve senescent CD4 and CD8 T cells; higher frequency (p < 0.003) and absolute numbers (p < 0.02) of PD-1 expressing exhausted CD8 T cells; a two-fold increase in Th17 polarisation (p < 0.0001); higher frequency of memory B cells (p < 0.001) and increased frequency (p < 0.0001) and numbers (p < 0.001) of CD57+ve senescent NK cells. As a result, the IMM-AGE score was significantly higher in severe COVID-19 survivors than in controls (p < 0.001). Few differences were seen for those with moderate disease and none for mild disease. Regression analysis revealed the only pre-existing variable influencing the IMM-AGE score was South Asian ethnicity (
= 0.174, p = 0.043), with a major influence being disease severity (
= 0.188, p = 0.01).
Conclusions
Our analyses reveal a state of enhanced immune ageing in survivors of severe COVID-19 and suggest this could be related to SARS-Cov-2 infection. Our data support the rationale for trials of anti-immune ageing interventions for improving clinical outcomes in these patients with severe disease
Effects of sleep disturbance on dyspnoea and impaired lung function following hospital admission due to COVID-19 in the UK: a prospective multicentre cohort study
Background:
Sleep disturbance is common following hospital admission both for COVID-19 and other causes. The clinical associations of this for recovery after hospital admission are poorly understood despite sleep disturbance contributing to morbidity in other scenarios. We aimed to investigate the prevalence and nature of sleep disturbance after discharge following hospital admission for COVID-19 and to assess whether this was associated with dyspnoea.
Methods:
CircCOVID was a prospective multicentre cohort substudy designed to investigate the effects of circadian disruption and sleep disturbance on recovery after COVID-19 in a cohort of participants aged 18 years or older, admitted to hospital for COVID-19 in the UK, and discharged between March, 2020, and October, 2021. Participants were recruited from the Post-hospitalisation COVID-19 study (PHOSP-COVID). Follow-up data were collected at two timepoints: an early time point 2–7 months after hospital discharge and a later time point 10–14 months after hospital discharge. Sleep quality was assessed subjectively using the Pittsburgh Sleep Quality Index questionnaire and a numerical rating scale. Sleep quality was also assessed with an accelerometer worn on the wrist (actigraphy) for 14 days. Participants were also clinically phenotyped, including assessment of symptoms (ie, anxiety [Generalised Anxiety Disorder 7-item scale questionnaire], muscle function [SARC-F questionnaire], dyspnoea [Dyspnoea-12 questionnaire] and measurement of lung function), at the early timepoint after discharge. Actigraphy results were also compared to a matched UK Biobank cohort (non-hospitalised individuals and recently hospitalised individuals). Multivariable linear regression was used to define associations of sleep disturbance with the primary outcome of breathlessness and the other clinical symptoms. PHOSP-COVID is registered on the ISRCTN Registry (ISRCTN10980107).
Findings:
2320 of 2468 participants in the PHOSP-COVID study attended an early timepoint research visit a median of 5 months (IQR 4–6) following discharge from 83 hospitals in the UK. Data for sleep quality were assessed by subjective measures (the Pittsburgh Sleep Quality Index questionnaire and the numerical rating scale) for 638 participants at the early time point. Sleep quality was also assessed using device-based measures (actigraphy) a median of 7 months (IQR 5–8 months) after discharge from hospital for 729 participants. After discharge from hospital, the majority (396 [62%] of 638) of participants who had been admitted to hospital for COVID-19 reported poor sleep quality in response to the Pittsburgh Sleep Quality Index questionnaire. A comparable proportion (338 [53%] of 638) of participants felt their sleep quality had deteriorated following discharge after COVID-19 admission, as assessed by the numerical rating scale. Device-based measurements were compared to an age-matched, sex-matched, BMI-matched, and time from discharge-matched UK Biobank cohort who had recently been admitted to hospital. Compared to the recently hospitalised matched UK Biobank cohort, participants in our study slept on average 65 min (95% CI 59 to 71) longer, had a lower sleep regularity index (–19%; 95% CI –20 to –16), and a lower sleep efficiency (3·83 percentage points; 95% CI 3·40 to 4·26). Similar results were obtained when comparisons were made with the non-hospitalised UK Biobank cohort. Overall sleep quality (unadjusted effect estimate 3·94; 95% CI 2·78 to 5·10), deterioration in sleep quality following hospital admission (3·00; 1·82 to 4·28), and sleep regularity (4·38; 2·10 to 6·65) were associated with higher dyspnoea scores. Poor sleep quality, deterioration in sleep quality, and sleep regularity were also associated with impaired lung function, as assessed by forced vital capacity. Depending on the sleep metric, anxiety mediated 18–39% of the effect of sleep disturbance on dyspnoea, while muscle weakness mediated 27–41% of this effect.
Interpretation:
Sleep disturbance following hospital admission for COVID-19 is associated with dyspnoea, anxiety, and muscle weakness. Due to the association with multiple symptoms, targeting sleep disturbance might be beneficial in treating the post-COVID-19 condition.
Funding:
UK Research and Innovation, National Institute for Health Research, and Engineering and Physical Sciences Research Council
- …