753 research outputs found

    Hot String Soup

    Get PDF
    Above the Hagedorn energy density closed fundamental strings form a long string phase. The dynamics of weakly interacting long strings is described by a simple Boltzmann equation which can be solved explicitly for equilibrium distributions. The average total number of long strings grows logarithmically with total energy in the microcanonical ensemble. This is consistent with calculations of the free single string density of states provided the thermodynamic limit is carefully defined. If the theory contains open strings the long string phase is suppressed.Comment: 13 pages, no figures, uses LaTex, some errors in equations have been corrected, NSF-ITP-94-83, UCSBTH-94-3

    A case for biotic morphogenesis of coniform stromatolites

    Full text link
    Mathematical models have recently been used to cast doubt on the biotic origin of stromatolites. Here by contrast we propose a biotic model for stromatolite morphogenesis which considers the relationship between upward growth of a phototropic or phototactic biofilm (vv) and mineral accretion normal to the surface (λ\lambda). These processes are sufficient to account for the growth and form of many ancient stromatolities. Domical stromatolites form when vv is less than or comparable to λ\lambda. Coniform structures with thickened apical zones, typical of Conophyton, form when v>>λv >> \lambda. More angular coniform structures, similar to the stromatolites claimed as the oldest macroscopic evidence of life, form when v>>>λv >>> \lambda.Comment: 10 pages, 3 figures, to appear in Physica

    Structural identifiability of surface binding reactions involving heterogeneous analyte : application to surface plasmon resonance experiments

    Get PDF
    Binding affinities are useful measures of target interaction and have an important role in understanding biochemical reactions that involve binding mechanisms. Surface plasmon resonance (SPR) provides convenient real-time measurement of the reaction that enables subsequent estimation of the reaction constants necessary to determine binding affinity. Three models are considered for application to SPR experiments—the well mixed Langmuir model and two models that represent the binding reaction in the presence of transport effects. One of these models, the effective rate constant approximation, can be derived from the other by applying a quasi-steady state assumption. Uniqueness of the reaction constants with respect to SPR measurements is considered via a structural identifiability analysis. It is shown that the models are structurally unidentifiable unless the sample concentration is known. The models are also considered for analytes with heterogeneity in the binding kinetics. This heterogeneity further confounds the identifiability of key parameters necessary for reliable estimation of the binding affinit

    Solitonic Strings and BPS Saturated Dyonic Black Holes

    Get PDF
    We consider a six-dimensional solitonic string solution described by a conformal chiral null model with non-trivial N=4N=4 superconformal transverse part. It can be interpreted as a five-dimensional dyonic solitonic string wound around a compact fifth dimension. The conformal model is regular with the short-distance (`throat') region equivalent to a WZW theory. At distances larger than the compactification scale the solitonic string reduces to a dyonic static spherically-symmetric black hole of toroidally compactified heterotic string. The new four-dimensional solution is parameterised by five charges, saturates the Bogomol'nyi bound and has nontrivial dilaton-axion field and moduli fields of two-torus. When acted by combined T- and S-duality transformations it serves as a generating solution for all the static spherically-symmetric BPS-saturated configurations of the low-energy heterotic string theory compactified on six-torus. Solutions with regular horizons have the global space-time structure of extreme Reissner-Nordstrom black holes with the non-zero thermodynamic entropy which depends only on conserved (quantised) charge vectors. The independence of the thermodynamic entropy on moduli and axion-dilaton couplings strongly suggests that it should have a microscopic interpretation as counting degeneracy of underlying string configurations. This interpretation is supported by arguments based on the corresponding six-dimensional conformal field theory. The expression for the level of the WZW theory describing the throat region implies a renormalisation of the string tension by a product of magnetic charges, thus relating the entropy and the number of oscillations of the solitonic string in compact directions.Comment: 27 Pages, uses RevTeX (solution for the axion field corrected, erratum to appear in Phys. Rev. D

    A Query Language Combining Object Features and Semantic Events for Surveillance Video Retrieval

    Get PDF
    International audienceIn this paper, we propose a novel query language for video indexing and retrieval that (1) enables to make queries both at the image level and at the semantic level (2) enables the users to define their own scenarios based on semantic events and (3) retrieves videos with both exact matching and similarity matching. For a query language, four main issues must be addressed: data modeling, query formulation, query parsing and query matching. In this paper we focus and give contributions on data modeling, query formulation and query matching. We are currently using color histograms and SIFT features at the image level and 10 types of events at the semantic level. We have tested the proposed query language for the retrieval of surveillance videos of a metro station. In our experiments the database contains more than 200 indexed physical objects and 48 semantic events. The results using different types of queries are promising

    On The Universality Class Of Little String Theories

    Get PDF
    We propose that Little String Theories in six dimensions are quasilocal quantum field theories. Such field theories obey a modification of Wightman axioms which allows Wightman functions (i.e. vacuum expectation values of products of fundamental fields) to grow exponentially in momentum space. Wightman functions of quasilocal fields in x-space violate microlocality at short distances. With additional assumptions about the ultraviolet behavior of quasilocal fields, one can define approximately local observables associated to big enough compact regions. The minimum size of such a region can be interpreted as the minimum distance which observables can probe. We argue that for Little String Theories this distance is of order {\sqrt N}/M_s.Comment: 25 pages, late

    Hawking Spectrum and High Frequency Dispersion

    Get PDF
    We study the spectrum of created particles in two-dimensional black hole geometries for a linear, hermitian scalar field satisfying a Lorentz non-invariant field equation with higher spatial derivative terms that are suppressed by powers of a fundamental momentum scale k0k_0. The preferred frame is the ``free-fall frame" of the black hole. This model is a variation of Unruh's sonic black hole analogy. We find that there are two qualitatively different types of particle production in this model: a thermal Hawking flux generated by ``mode conversion" at the black hole horizon, and a non-thermal spectrum generated via scattering off the background into negative free-fall frequency modes. This second process has nothing to do with black holes and does not occur for the ordinary wave equation because such modes do not propagate outside the horizon with positive Killing frequency. The horizon component of the radiation is astonishingly close to a perfect thermal spectrum: for the smoothest metric studied, with Hawking temperature TH0.0008k0T_H\simeq0.0008k_0, agreement is of order (TH/k0)3(T_H/k_0)^3 at frequency ω=TH\omega=T_H, and agreement to order TH/k0T_H/k_0 persists out to ω/TH45\omega/T_H\simeq 45 where the thermal number flux is O(1020O(10^{-20}). The flux from scattering dominates at large ω\omega and becomes many orders of magnitude larger than the horizon component for metrics with a ``kink", i.e. a region of high curvature localized on a static worldline outside the horizon. This non-thermal flux amounts to roughly 10\% of the total luminosity for the kinkier metrics considered. The flux exhibits oscillations as a function of frequency which can be explained by interference between the various contributions to the flux.Comment: 32 pages, plain latex, 16 figures included using psfi

    BTZ black holes and the near-horizon geometry of higher-dimensional black holes

    Get PDF
    We investigate the connection between the BTZ black holes and the near-horizon geometry of higher-dimensional black holes. Under mild conditions, we show that (i) if a black hole has a global structure of the type of the non-extremal Reissner-Nordstrom black holes, its near-horizon geometry is AdS2AdS_2 times a sphere, and further (ii) if such a black hole is obtained from a boosted black string by dimensional reduction, the near-horizon geometry of the latter contains a BTZ black hole. Because of these facts, the calculation of the Bekenstein-Hawking entropy and the absorption cross-sections of scalar fields is essentially reduced to the corresponding calculation in the BTZ geometry under appropriate conditions. This holds even if the geometry is not supersymmetric in the extremal limit. Several examples are discussed. We also discuss some generalizations to geometries which do not have AdSAdS near the horizon.Comment: 19 pages, LaTex, (v2) a comment on black holes with 2 and 3 charges added, (v3) some phrases made more precise, references added, minor changes; version to appear in Phys. Rev.

    Dynamics and Scaling of 2D Polymers in a Dilute Solution

    Get PDF
    The breakdown of dynamical scaling for a dilute polymer solution in 2D has been suggested by Shannon and Choy [Phys. Rev. Lett. {\bf 79}, 1455 (1997)]. However, we show here both numerically and analytically that dynamical scaling holds when the finite-size dependence of the relevant dynamical quantities is properly taken into account. We carry out large-scale simulations in 2D for a polymer chain in a good solvent with full hydrodynamic interactions to verify dynamical scaling. This is achieved by novel mesoscopic simulation techniques

    Is string theory a theory of quantum gravity?

    Full text link
    Some problems in finding a complete quantum theory incorporating gravity are discussed. One is that of giving a consistent unitary description of high-energy scattering. Another is that of giving a consistent quantum description of cosmology, with appropriate observables. While string theory addresses some problems of quantum gravity, its ability to resolve these remains unclear. Answers may require new mechanisms and constructs, whether within string theory, or in another framework.Comment: Invited contribution for "Forty Years of String Theory: Reflecting on the Foundations," a special issue of Found. Phys., ed. by G 't Hooft, E. Verlinde, D. Dieks, S. de Haro. 32 pages, 5 figs., harvmac. v2: final version to appear in journal (small revisions
    corecore