24 research outputs found

    The JEM-EUSO Mission

    Get PDF
    JEM-EUSO is a science mission to explore extremes of the Universe. It observes the dark-side of the Earth and detects UV photons emitted from the extensive air shower caused by an extreme energy particle (about 10(exp 20) eV). Such a particle arrives almost straightly through our Milky Way Galaxy and is expected to allow us to trace the source location by its arrival direction. This will open the door to the new astronomy with charged particles. In its five years operation including the tilted mode, JEM-EUSO will detect at least 1,000 events with E>7 X 10(exp 19) eV and determine the energy spectrum of trans-GZK region with a statistical accuracy of several percent. JEM-EUSO is planned to be transported with HTV (H2 Transfer Vehicle) and attached to the Japanese Experiment Module/ Exposure Facility (JEM/EF) of International Space Station. JAXA has selected JEM-EUSO for one of the mission candidates of the second phase utilization of JEM/EF for the launch of early 2010s. One year-long phase-A study will be carried out under JAXA

    Cherenkov and Scintillation Properties of Cubic Zirconium

    No full text
    Cubic zirconium (CZ) is a high index of refraction (n =2.17) material that we have investigated for Cherenkov counter applications. Laboratory and proton accelerator tests of an 18cc sample of CZ show that the expected fast Cherenkov response is accompanied by a longer scintillation component that can be separated by pulse shaping. This presents the possibility of novel particle spectrometers which exploits both properties of CZ. Other high index materials being examined for Cherenkov applications will be discussed. Results from laboratory tests and an accelerator exposure will be presented and a potential application in solar energetic particle instruments will be discusse

    Local and global trace plutonium contributions in fast breeder legacy soils

    No full text
    Trace-level plutonium in the environment often comprises local and global contributions, and is usually anthropogenic in origin. Here, we report estimates of local and global contributions to trace-level plutonium in soil from a former, fast-breeder reactor site. The measured 240Pu/239Pu ratio is anomalously low, as per the reduced 240Pu yield expected in plutonium bred with fast neutrons. Anomalies in plutonium concentration and isotopic ratio suggest forensic insight into specific activities on site, such as clean-up or structural change. Local and global 239Pu contributions on-site are estimated at (34 ± 1)% and (66 ± 3)%, respectively, with mass concentrations of (183 ± 6) fg g−1 and (362 ± 13) fg g−1. The latter is consistent with levels at undisturbed and distant sites, (384 ± 44) fg g−1, where no local contribution is expected. The 240Pu/239Pu ratio for site-derived material is estimated at 0.05 ± 0.04. Our study demonstrates the multi-faceted potential of trace plutonium assay to inform clean-up strategies of fast breeder legacies. © 2021, The Author(s)

    A Comparison of γ-ray Spectroscopy with Accelerator Mass Spectrometry for the Environmental Assay of Plutonium

    No full text
    A variety of analytical techniques have been developed and applied to the analysis of plutonium, including α-particle spectroscopy, Hybrid K-edge densitometry, X-ray fluorescence, γ-ray spectroscopy and various embodiments of mass spectroscopy. For bulk analysis requirements of environmentally-derived substances, such as soils in the context of the assessment of plutonium in contaminated land, methods that require several stages of sample preparation are generally not suitable because such preparatory work cannot be done easily, in-situ, in the field. Further, specific localized arisings in the land, i.e., particles, might be missed by a sample-based methodology. Neutron assay is generally not sufficiently sensitive for trace plutonium assay in bulk samples because the abundance of 240 Pu (favored in this regard for its spontaneous fission neutron emission) is usually too small to overcome the inherent contribution from 238 U. By contrast, high-resolution, γ-ray spectroscopy offers the potential to assess relatively large sample quantities, given that a correction is made for self-shielding by the sample. Broad energy germanium (BEGe) counters offer unparalleled performance in terms of both i) energy resolution (particularly in the energy region 50 - 150 keV relevant for 241 Am as a conduit for 241 Pu) and ii) detection efficiency. Whilst arguably the most sensitive analytical method with isotopic sensitivity for trace plutonium is accelerator mass spectrometry, high-resolution, γ-ray spectrometry can provide an independent route for bulk assay of samples without the need for extensive sample preparation. This paper will discuss the challenges associated with these approaches drawing on data taken with soil samples from the United Kingdom

    The POEMMA (Probe of Extreme Multi-Messenger Astrophysics) mission

    Get PDF
    International audienceThe Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) is designed to observe cosmic neutrinos (CNs) above 20 PeV and ultra-high energy cosmic rays (UHECRs) above 20 EeV over the full sky. The POEMMA mission calls for two identical satellites flying in loose formation, each comprised of a 4-meter wide field-of-view (45 degrees) Schmidt photometer. The hybrid focal surface includes a fast (1 μ{\mu}s) ultraviolet camera for fluorescence observations and an ultrafast (10 ns) optical camera for Cherenkov observations. POEMMA will provide new multi-messenger windows onto the most energetic events in the universe, enabling the study of new astrophysics and particle physics at these otherwise inaccessible energies

    Extreme Universe Space Observatory on a Super Pressure Balloon 1 calibration: from the laboratory to the desert

    Get PDF
    International audienceThe Extreme Universe Space Observatory on a Super Pressure Balloon 1 (EUSO-SPB1) instrument was launched out of Wanaka, New Zealand, by NASA in April, 2017 as a mission of opportunity. The detector was developed as part of the Joint Experimental Missions for the Extreme Universe Space Observatory (JEM-EUSO) program toward a space-based ultra-high energy cosmic ray (UHECR) telescope with the main objective to make the first observation of UHECRs via the fluorescence technique from suborbital space. The EUSO-SPB1 instrument is a refractive telescope consisting of two 1m2^{2} Fresnel lenses with a high-speed UV camera at the focal plane. The camera has 2304 individual pixels capable of single photoelectron counting with a time resolution of 2.5μ s. A detailed performance study including calibration was done on ground. We separately evaluated the properties of the Photo Detector Module (PDM) and the optical system in the laboratory. An end-to-end test of the instrument was performed during a field campaign in the West Desert in Utah, USA at the Telescope Array (TA) site in September 2016. The campaign lasted for 8 nights. In this article we present the results of the preflight laboratory and field tests. Based on the tests performed in the field, it was determined that EUSO-SPB1 has a field of view of 11.1^{∘} and an absolute photo-detection efficiency of 10%. We also measured the light flux necessary to obtain a 50% trigger efficiency using laser beams. These measurements were crucial for us to perform an accurate post flight event rate calculation to validate our cosmic ray search. Laser beams were also used to estimated the reconstruction angular resolution. Finally, we performed a flat field measurement in flight configuration at the launch site prior to the launch providing a uniformity of the focal surface better than 6%
    corecore