419 research outputs found
Oscillations of a rapidly rotating annular Bose-Einstein condensate
A time-dependent variational Lagrangian analysis based on the
Gross-Pitaevskii energy functional serves to study the dynamics of a metastable
giant vortex in a rapidly rotating Bose-Einstein condensate. The resulting
oscillation frequencies of the core radius reproduce the trends seen in recent
experiments [Engels et al., Phys. Rev. Lett. 90, 170405 (2003)], but the
theoretical values are smaller by a factor approximately 0.6-0.8.Comment: 7 pages, revtex
The role of Hall diffusion in the magnetically threaded thin accretion discs
We study role of the Hall diffusion in the magnetic star-disc interaction. In
a simplified steady state configuration, the total torque is calculated in
terms of the fastness parameter and a new term because of the Hall diffusion.
We show the total torque reduces as the Hall term becomes more significant.
Also, the critical fastness parameter (at which the total torque is zero)
reduces because of the Hall diffusion.Comment: Accepted for publication in Astrophysics and Space Scienc
The Bogoliubov Theory of a BEC in Particle Representation
In the number-conserving Bogoliubov theory of BEC the Bogoliubov
transformation between quasiparticles and particles is nonlinear. We invert
this nonlinear transformation and give general expression for eigenstates of
the Bogoliubov Hamiltonian in particle representation. The particle
representation unveils structure of a condensate multiparticle wavefunction. We
give several examples to illustrate the general formalism.Comment: 10 pages, 9 figures, version accepted for publication in Phys. Rev.
Vortex phase diagram in trapped Bose-Einstein condensation
The vortex phase diagram in the external rotation frequency versus
temperature is calculated for dilute Bose-Einstein condensed gases. It is
determined within the Bogoliubov-Popov theory for a finite temperature where
the condensate and non-condensate fractions are treated in an equal footing.
The temperature dependences of various thermodynamic instability lines for the
vortex nucleation are computed to construct the phase diagram. Experiments are
proposed to resolve a recent controversy on the vortex creation problem
associated with the quantized vortex observation in Rb atom gases.Comment: 11 pages, 8 figure
Scattering of light and atoms in a Fermi-Dirac gas with BCS pairing
We theoretically study the optical properties of a Fermi-Dirac gas in the
presence of a superfluid state. We calculate the leading quantum-statistical
corrections to the standard column density result of the electric
susceptibility. We also consider the Bragg diffraction of atoms by means of
light-stimulated transitions of photons between two intersecting laser beams.
Bardeen-Cooper-Schrieffer pairing between atoms in different internal levels
magnifies incoherent scattering processes. The absorption linewidth of a
Fermi-Dirac gas is broadened and shifted. Bardeen-Cooper-Schrieffer pairing
introduces a collisional local-field shift that may dramatically dominate the
Lorentz-Lorenz shift. For the case of the Bragg spectroscopy the static
structure function may be significantly increased due to superfluidity in the
nearforward scattering.Comment: 13 pages, 6 figures; to appear in PR
A Measurement of Time-Averaged Aerosol Optical Depth using Air-Showers Observed in Stereo by HiRes
Air fluorescence measurements of cosmic ray energy must be corrected for
attenuation of the atmosphere. In this paper we show that the air-showers
themselves can yield a measurement of the aerosol attenuation in terms of
optical depth, time-averaged over extended periods. Although the technique
lacks statistical power to make the critical hourly measurements that only
specialized active instruments can achieve, we note the technique does not
depend on absolute calibration of the detector hardware, and requires no
additional equipment beyond the fluorescence detectors that observe the air
showers. This paper describes the technique, and presents results based on
analysis of 1258 air-showers observed in stereo by the High Resolution Fly's
Eye over a four year span.Comment: 7 pages, 3 figures, accepted for publication by Astroparticle Physics
Journa
Search for Global Dipole Enhancements in the HiRes-I Monocular Data above 10^{18.5} eV
Several proposed source models for Ultra-High Energy Cosmic Rays (UHECRs)
consist of dipole distributions oriented towards major astrophysical landmarks
such as the galactic center, M87, or Centaurus A. We use a comparison between
real data and simulated data to show that the HiRes-I monocular data for
energies above 10^{18.5} eV is, in fact, consistent with an isotropic source
model. We then explore methods to quantify our sensitivity to dipole source
models oriented towards the Galactic Center, M87, and Centaurus A.Comment: 17 pages, 31 figure
Persistent currents in a circular array of Bose-Einstein condensates
A ring-shaped array of Bose-Einstein condensed atomic gases can display
circular currents if the relative phase of neighboring condensates becomes
locked to certain values. It is shown that, irrespective of the mechanism
responsible for generating these states, only a restricted set of currents are
stable, depending on the number of condensates, on the interaction and
tunneling energies, and on the total number of particles. Different
instabilities due to quasiparticle excitations are characterized and possible
experimental setups for testing the stability prediction are also discussed.Comment: 7 pages, REVTex
Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap
We study the numerical resolution of the time-dependent Gross-Pitaevskii
equation, a non-linear Schroedinger equation used to simulate the dynamics of
Bose-Einstein condensates. Considering condensates trapped in harmonic
potentials, we present an efficient algorithm by making use of a spectral
Galerkin method, using a basis set of harmonic oscillator functions, and the
Gauss-Hermite quadrature. We apply this algorithm to the simulation of
condensate breathing and scissors modes.Comment: 23 pages, 5 figure
Generation of vortices and observation of Quantum Turbulence in an oscillating Bose-Einstein Condensate
We report on the experimental observation of vortex formation and production
of tangled vortex distribution in an atomic BEC of Rb-87 atoms submitted to an
external oscillatory perturbation. The oscillatory perturbations start by
exciting quadrupolar and scissors modes of the condensate. Then regular
vortices are observed finally evolving to a vortex tangle configuration. The
vortex tangle is a signature of the presence of a turbulent regime in the
cloud. We also show that this turbulent cloud has suppression of the aspect
ratio inversion typically observed in quantum degenerate bosonic gases during
free expansion.Comment: to appear in JLTP - QFS 200
- …