1,920 research outputs found

    On the expected number of equilibria in a multi-player multi-strategy evolutionary game

    Get PDF
    In this paper, we analyze the mean number E(n,d)E(n,d) of internal equilibria in a general dd-player nn-strategy evolutionary game where the agents' payoffs are normally distributed. First, we give a computationally implementable formula for the general case. Next we characterize the asymptotic behavior of E(2,d)E(2,d), estimating its lower and upper bounds as dd increases. Then we provide an exact formula for E(n,2)E(n,2). As a consequence, we show that in both cases the probability to see the maximal possible number of equilibria tends to zero when dd or nn respectively goes to infinity. Finally, for larger nn and dd, numerical results are provided and discussed

    Submergence of the Sidebands in the Photon-assisted Tunneling through a Quantum Dot Weakly Coupled to Luttinger Liquid Leads

    Full text link
    We study theoretically the photon-assisted tunneling through a quantum dot weakly coupled to Luttinger liquids (LL) leads, and find that the zero bias dc conductance is strongly affected by the interactions in the LL leads. In comparison with the system with Fermi liquid (FL) leads, the sideband peaks of the dc conductance become blurring for 1/2<g<1, and finally merge into the central peak for g<1/2, (g is the interaction parameter in the LL leads). The sidebands are suppressed for LL leads with Coulomb interactions strong enough, and the conductance always appears as a single peak for any strength and frequency of the external time-dependent field. Furthermore, the quenching effect of the central peak for the FL case does not exist for g<1/2.Comment: 9 pages, 4 figure

    Habitable Zones and UV Habitable Zones around Host Stars

    Full text link
    Ultraviolet radiation is a double-edged sword to life. If it is too strong, the terrestrial biological systems will be damaged. And if it is too weak, the synthesis of many biochemical compounds can not go along. We try to obtain the continuous ultraviolet habitable zones, and compare the ultraviolet habitable zones with the habitable zones of host stars. Using the boundary ultraviolet radiation of ultraviolet habitable zone, we calculate the ultraviolet habitable zones of host stars with masses from 0.08 to 4.00 \mo. For the host stars with effective temperatures lower than 4,600 K, the ultraviolet habitable zones are closer than the habitable zones. For the host stars with effective temperatures higher than 7,137 K, the ultraviolet habitable zones are farther than the habitable zones. For hot subdwarf as a host star, the distance of the ultraviolet habitable zone is about ten times more than that of the habitable zone, which is not suitable for life existence.Comment: 5 pages, 3 figure

    Conceptual design and performance evaluation of a hybrid concentrating photovoltaic system in preparation for energy

    Get PDF
    Concentrating sunlight and focussing it on smaller sized solar cells increases the device's power output per unit active area. However, this process tends to increase the solar cell temperature considerably and has the potential to compromise system reliability. Adding a heat exchanger system to regulate this temperature rise, can improve the electrical performance whilst simultaneously providing an additional source of low temperature heat. In this study the performance of a low concentrator photovoltaic system with thermal (LCPV/T) extraction was conceptualised and evaluated in depth. An experimental analysis was performed using a first-generation prototype consisting of 5 units of Cross Compound Parabolic Concentrators (CCPC) connected to a heat extraction unit. A bespoke rotating table was used as experimental apparatus to effectively evaluate the optical performance of the system, as a function of its angular positions to replicate the motion of actual sun. Key design performance parameters for the LCPV/T collector are presented and discussed. This work also provides a useful technique to effectively calculate system performance, as a function of the orientation-dependant electrical characterisation parameters data. Finally, a Computational Fluid Dynamics (CFD) model was also applied to investigate the efficacy of the heat exchanger and hence estimate the overall co-generation benefit of using such optimisation techniques on realistic CPV systems. It was highlighted through these simulations that the water flow rate had the potential to be a critical power-generation optimisation criterion for LCPV-T systems. The maximum power output at normal incidence with concentrators and no water flow was found to be 78.4 mW. The system was found to perform with an average electrical efficiency ranging between 10 and 16% when evaluated at five different geographic locations. Experimental analysis of the data obtained showed an increase in power of 141% (power ratio 2.41) compared to the analogous non-concentrating counterpart. For example, in the case of London which receives an annual solar radiation of 1300 kWh/m2 the system is expected to generate 210 kWh/m2. This may reduce further to include losses due to temperature, reflectance/glazing losses, and electrical losses in cabling and inverter by up to 36% leading to an annual power output of 134 kWh/m2 of module

    A minimum single-band model for low-energy excitations in superconducting Kx_xFe2_2Se2_2

    Get PDF
    We propose a minimum single-band model for the newly discovered iron-based superconducting Kx_xFe2_2Se2_2. Our model is found to be numerically consistent with the five-orbital model at low energies. Based on our model and the random phase approximation, we study the spin fluctuation and the pairing symmetry of superconducting gap function. The (π/2,π/2)(\pi/2,\pi/2) spin excitation and the dx2y2d_{x^2-y^2} pairing symmetry are revealed. All of the results can well be understood in terms of the interplay between the Fermi surface topology and the local spin interaction, providing a sound picture to explain why the superconducting transition temperature is as high as to be comparable to those in pnictides and some cuprates. A common origin of superconductivity is elucidated for this compound and other high-Tc_c materials.Comment: 5 pages, 4 figure

    On the formation process of silicon carbide nanophases via hydrogenated thermally induced templated synthesis

    Full text link
    A thermally induced templated synthesis for SiC nanotubes and nanofibers using ammonia or nitrogen as a carrier gas, single wall carbon nanotubes (SWCNT) as templates as well as gaseous Si is presented. The bundles of SWCNT act as both the carbon source and as a nanoframe from which SiC structuctures form. Depending on the duration of the thermally induced templated reaction, for a fixed temperature, carrier gas, and gas pressure, various SiC nanostructures are obtained. These structures include SiC nanorods coated in C, SiC nanorods, SiC nanotubes, and SiC nanocrytals. From our analysis using transmission electron microscopy (TEM) and scanning electron microscopy (SEM), electron energy-loss spectroscopy (EELS), electron diffraction (EDX), optical absorption spectroscopy and Raman spectroscopy as probes we prove that H has a key role on the morphology and stochiometry of the different SiC nanostructures.Comment: 9 pages, 2 Figure

    The seesaw mechanism at TeV scale in the 3-3-1 model with right-handed neutrinos

    Full text link
    We implement the seesaw mechanism in the 3-3-1 model with right-handed neutrinos. This is accomplished by the introduction of a scalar sextet into the model and the spontaneous violation of the lepton number. We identify the Majoron as a singlet under SUL(2)UY(1)SU_L(2)\otimes U_Y(1) symmetry, which makes it safe under the current bounds imposed by electroweak data. The main result of this work is that the seesaw mechanism works already at TeV scale with the outcome that the right-handed neutrino masses lie in the electroweak scale, in the range from MeV to tens of GeV. This window provides a great opportunity to test their appearance at current detectors, though when we contrast our results with some previous analysis concerning detection sensitivity at LHC, we conclude that further work is needed in order to validate this search.Comment: about 13 pages, no figure

    Golgi Outpost Synthesis Impaired by Toxic Polyglutamine Proteins Contributes to Dendritic Pathology in Neurons

    Get PDF
    Dendrite aberration is a common feature of neurodegenerative diseases caused by protein toxicity, but the underlying mechanisms remain largely elusive. Here, we show that nuclear polyglutamine (polyQ) toxicity resulted in defective terminal dendrite elongation accompanied by a loss of Golgi outposts (GOPs) and a decreased supply of plasma membrane (PM) in Drosophila class IV dendritic arborization (da) (C4 da) neurons. mRNA sequencing revealed that genes downregulated by polyQ proteins included many secretory pathway-related genes, including COPII genes regulating GOP synthesis. Transcription factor enrichment analysis identified CREB3L1/CrebA, which regulates COPII gene expression. CrebA overexpression in C4 da neurons restores the dysregulation of COPII genes, GOP synthesis, and PM supply. Chromatin immunoprecipitation (ChIP)-PCR revealed that CrebA expression is regulated by CREB-binding protein (CBP), which is sequestered by polyQ proteins. Furthermore, co-overexpression of CrebA and Rac1 synergistically restores the polyQ-induced dendrite pathology. Collectively, our results suggest that GOPs impaired by polyQ proteins contribute to dendrite pathology through the CBP-CrebA-COPII pathway. ? 2017 The Author(s)113Ysciescopu

    Structure of Fat Jets at the Tevatron and Beyond

    Full text link
    Boosted resonances is a highly probable and enthusiastic scenario in any process probing the electroweak scale. Such objects when decaying into jets can easily blend with the cornucopia of jets from hard relative light QCD states. We review jet observables and algorithms that can contribute to the identification of highly boosted heavy jets and the possible searches that can make use of such substructure information. We also review previous studies by CDF on boosted jets and its measurements on specific jet shapes.Comment: invited review for a special "Top and flavour physics in the LHC era" issue of The European Physical Journal C, we invite comments regarding contents of the review; v2 added references and institutional preprint number

    Update on biomarkers in neuromyelitis optica

    Get PDF
    Neuromyelitis optica (NMO) (and NMO spectrum disorder) is an autoimmune inflammatory disease of the CNS primarily affecting spinal cord and optic nerves. Reliable and sensitive biomarkers for onset, relapse, and progression in NMO are urgently needed because of the heterogeneous clinical presentation, severity of neurologic disability following relapses, and variability of therapeutic response. Detecting aquaporin-4 (AQP4) antibodies (AQP4-IgG or NMO-IgG) in serum supports the diagnosis of seropositive NMO. However, whether AQP4-IgG levels correlate with disease activity, severity, response to therapy, or long-term outcomes is unclear. Moreover, biomarkers for patients with seronegative NMO have yet to be defined and validated. Collaborative international studies hold great promise for establishing and validating biomarkers that are useful in therapeutic trials and clinical management. In this review, we discuss known and potential biomarkers for NMO
    corecore