13 research outputs found
The future problem solving program international: an intervention to promote creative skills in portuguese adolescents
The Future Problem Solving Program International (FPSPI) is an internationally applied educational
program that involves young people. Its theoretical foundation is both the Creative Problem Solving
Model and the Futurist Thinking. It aims to promote creative and critical thinking through a futurist
approach to problems. This study intended to analyze the effects of the program on creative skills evaluated
by the Torrance Tests of Creative Thinking (Figural Version). The participantsâ perceptions of the
efficacy of the program were also assessed. This intervention was carried out with 131 adolescents over
a period of 7 months in an extra-curricular context. The evaluation of the program takes into account
periods both before and after interventions, using similar experimental and control groups. The results
showed significant statistical differences for the all skills studied and very positive perceptions of the
efficacy of FPSPI. Two significant gender differences in creative performance were also found. The
results are described and discussed in order to promote awareness for future research concerning this program(undefined)info:eu-repo/semantics/publishedVersio
The state of the Martian climate
60°N was +2.0°C, relative to the 1981â2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
Schmidt-hammer exposure ages from periglacial patterned ground (sorted circles) in Jotunheimen, Norway, and their interpretative problems
© 2016 Swedish Society for Anthropology and Geography Periglacial patterned ground (sorted circles and polygons) along an altitudinal profile at Juvflya in central Jotunheimen, southern Norway, is investigated using Schmidt-hammer exposure-age dating (SHD). The patterned ground surfaces exhibit R-value distributions with platycurtic modes, broad plateaus, narrow tails, and a negative skew. Sample sites located between 1500 and 1925 m a.s.l. indicate a distinct altitudinal gradient of increasing mean R-values towards higher altitudes interpreted as a chronological function. An established regional SHD calibration curve for Jotunheimen yielded mean boulder exposure ages in the range 6910 ± 510 to 8240 ± 495 years ago. These SHD ages are indicative of the timing of patterned ground formation, representing minimum ages for active boulder upfreezing and maximum ages for the stabilization of boulders in the encircling gutters. Despite uncertainties associated with the calibration curve and the age distribution of the boulders, the early-Holocene age of the patterned ground surfaces, the apparent cessation of major activity during the Holocene Thermal Maximum (HTM) and continuing lack of late-Holocene activity clarify existing understanding of the process dynamics and palaeoclimatic significance of large-scale sorted patterned ground as an indicator of a permafrost environment. The interpretation of SHD ages from patterned ground surfaces remains challenging, however, owing to their diachronous nature, the potential for a complex history of formation, and the influence of local, non-climatic factors
Genetic architecture of spatial electrical biomarkers for cardiac arrhythmia and relationship with cardiovascular disease
The 3-dimensional spatial and 2-dimensional frontal QRS-T angles are measures derived from the vectorcardiogram. They are independent risk predictors for arrhythmia, but the underlying biology is unknown. Using multi-ancestry genome-wide association studies we identify 61 (58 previously unreported) loci for the spatial QRS-T angle (N = 118,780) and 11 for the frontal QRS-T angle (N = 159,715). Seven out of the 61 spatial QRS-T angle loci have not been reported for other electrocardiographic measures. Enrichments are observed in pathways related to cardiac and vascular development, muscle contraction, and hypertrophy. Pairwise genome-wide association studies with classical ECG traits identify shared genetic influences with PR interval and QRS duration. Phenome-wide scanning indicate associations with atrial fibrillation, atrioventricular block and arterial embolism and genetically determined QRS-T angle measures are associated with fascicular and bundle branch block (and also atrioventricular block for the frontal QRS-T angle). We identify potential biology involved in the QRS-T angle and their genetic relationships with cardiovascular traits and diseases, may inform future research and risk prediction
Nyskapning og teknologiutvikling i Nord-Norge. Evaluering av NT programmet
Programmet for nyskaping og teknologispredning i Nord-Norge (NT-programmet) er nÄ er inne i sin andre programperiode fra 1993 til 1996, og i denne rapporten vises resultater fra en evaluering av programmet mot slutten av denne perioden. Dette kapitlet gir et kort sammendrag av rapporten. Lesere som er interessert i en mer omfattende sammenfatning, uten Ä mÄtte lese hele rapporten, henvises til kapitel 1 og 8. Til sammen gir disse en kort beskrivelse av NT-programmet, hva evalueringen har omfattet, samt STEP-gruppens konklusjoner og anbefalinger for viderefÞring av programmet. HovedmÄlet med NT-programmet er Ä skape ny virksomhet i nordnorske teknologibedrifter. Det gjÞres gjennom finansiell stÞtte til produkt- og prosess-utvikling og til innledende markedsarbeid i utvalgte bedrifter i Nord-Norge, stÞtte til samarbeid mellom bedriftene og kompetansemiljÞer, samt aktiv oppfÞlging av utviklingsprosjekter i bedriftene, med rÄd, veiledning og hjelp til bedriftene for Ä knytte kontakt med andre bedrifter, personer og institusjoner. Evalueringen tar for seg fire hovedpunkter ved NT-programmet; nemlig 1) om mÄlsetningene med programmet er hensiktsmessige, 2) om programmet gjennomfÞres effektivt, 3) om de Þnskede resultatene oppnÄs og 4) om hvilken rolle programmet spiller i det totale virkemiddelapparatet i Nord-Norge.
Genetic analyses of the electrocardiographic QT interval and its components identify additional loci and pathways
The QT interval is an electrocardiographic measure representing the sum of ventricular depolarization and repolarization, estimated by QRS duration and JT interval, respectively. QT interval abnormalities are associated with potentially fatal ventricular arrhythmia. Using genome-wide multi-ancestry analyses (>250,000 individuals) we identify 177, 156 and 121 independent loci for QT, JT and QRS, respectively, including a male-specific X-chromosome locus. Using gene-based rare-variant methods, we identify associations with Mendelian disease genes. Enrichments are observed in established pathways for QT and JT, and previously unreported genes indicated in insulin-receptor signalling and cardiac energy metabolism. In contrast for QRS, connective tissue components and processes for cell growth and extracellular matrix interactions are significantly enriched. We demonstrate polygenic risk score associations with atrial fibrillation, conduction disease and sudden cardiac death. Prioritization of druggable genes highlight potential therapeutic targets for arrhythmia. Together, these results substantially advance our understanding of the genetic architecture of ventricular depolarization and repolarization
Genetic analyses of the electrocardiographic QT interval and its components identify additional loci and pathways
The QT interval is an electrocardiographic measure representing the sum of ventricular depolarization and repolarization, estimated by QRS duration and JT interval, respectively. QT interval abnormalities are associated with potentially fatal ventricular arrhythmia. Using genome-wide multi-ancestry analyses (>250,000 individuals) we identify 177, 156 and 121 independent loci for QT, JT and QRS, respectively, including a male-specific X-chromosome locus. Using gene-based rare-variant methods, we identify associations with Mendelian disease genes. Enrichments are observed in established pathways for QT and JT, and previously unreported genes indicated in insulin-receptor signalling and cardiac energy metabolism. In contrast for QRS, connective tissue components and processes for cell growth and extracellular matrix interactions are significantly enriched. We demonstrate polygenic risk score associations with atrial fibrillation, conduction disease and sudden cardiac death. Prioritization of druggable genes highlight potential therapeutic targets for arrhythmia. Together, these results substantially advance our understanding of the genetic architecture of ventricular depolarization and repolarization.Pathophysiology, epidemiology and therapy of agein
State of the climate in 2015
In 2015, the dominant greenhouse gases released into Earth\u2019s atmosphere\u2014carbon dioxide, methane, and nitrous oxide\u2014all continued to reach new high levels. At Mauna Loa, Hawaii, the annual CO2 concentration increased by a record 3.1 ppm, exceeding 400 ppm for the first time on record. The 2015 global CO2 average neared this threshold, at 399.4 ppm. Additionally, one of the strongest El Ni\uf1o events since at least 1950 developed in spring 2015 and continued to evolve through the year. The phenomenon was far reaching, impacting many regions across the globe and affecting most aspects of the climate system. Owing to the combination of El Ni\uf1o and a long-term upward trend, Earth observed record warmth for the second consecutive year, with the 2015 annual global surface temperature surpassing the previous record by more than 0.1\ub0C and exceeding the average for the mid- to late 19th century\u2014commonly considered representative of preindustrial conditions\u2014by more than 1\ub0C for the first time. Above Earth\u2019s surface, lower troposphere temperatures were near-record high. Across land surfaces, record to near-record warmth was reported across every inhabited continent. Twelve countries, including Russia and China, reported record high annual temperatures. In June, one of the most severe heat waves since 1980 affected Karachi, Pakistan, claiming over 1000 lives. On 27 October, Vredendal, South Africa, reached 48.4\ub0C, a new global high temperature record for this month. In the Arctic, the 2015 land surface temperature was 1.2\ub0C above the 1981\u20132010 average, tying 2007 and 2011 for the highest annual temperature and representing a 2.8\ub0C increase since the record began in 1900. Increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 25 February 2015, the lowest maximum sea ice extent in the 37-year satellite record was observed, 7% below the 1981\u20132010 average. Mean sea surface temperatures across the Arctic Ocean during August in ice-free regions, representative of Arctic Ocean summer anomalies, ranged from ~0\ub0C to 8\ub0C above average. As a consequence of sea ice retreat and warming oceans, vast walrus herds in the Pacific Arctic are hauling out on land rather than on sea ice, raising concern about the energetics of females and young animals. Increasing temperatures in the Barents Sea are linked to a community-wide shift in fish populations: boreal communities are now farther north, and long-standing Arctic species have been almost pushed out of the area. Above average sea surface temperatures are not confined to the Arctic. Sea surface temperature for 2015 was record high at the global scale; however, the North Atlantic southeast of Greenland remained colder than average and colder than 2014. Global annual ocean heat content and mean sea level also reached new record highs. The Greenland Ice Sheet, with the capacity to contribute ~7 m to sea level rise, experienced melting over more than 50% of its surface for the first time since the record melt of 2012. Other aspects of the cryosphere were remarkable. Alpine glacier retreat continued, and preliminary data indicate that 2015 is the 36th consecutive year of negative annual mass balance. Across the Northern Hemisphere, late-spring snow cover extent continued its trend of decline, with June the second lowest in the 49-year satellite record. Below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska, increasing by up to 0.66\ub0C decade\u20131 since 2000. In the Antarctic, surface pressure and temperatures were lower than the 1981\u20132010 average for most of the year, consistent with the primarily positive southern annular mode, which saw a record high index value of +4.92 in February. Antarctic sea ice extent and area had large intra-annual variability, with a shift from record high levels in May to record low levels in August. Springtime ozone depletion resulted in one of the largest and most persistent Antarctic ozone holes observed since the 1990s. Closer to the equator, 101 named tropical storms were observed in 2015, well above the 1981\u20132010 average of 82. The eastern/central Pacific had 26 named storms, the most since 1992. The western north Pacific and north and south Indian Ocean basins also saw high activity. Globally, eight tropical cyclones reached the Saffir\u2013Simpson Category 5 intensity level. Overlaying a general increase in the hydrologic cycle, the strong El Ni\uf1o enhanced precipitation variability around the world. An above-normal rainy season led to major floods in Paraguay, Bolivia, and southern Brazil. In May, the United States recorded its all-time wettest month in its 121-year national record. Denmark and Norway reported their second and third wettest year on record, respectively, but globally soil moisture was below average, terrestrial groundwater storage was the lowest in the 14-year record, and areas in \u201csevere\u201d drought rose from 8% in 2014 to 14% in 2015. Drought conditions prevailed across many Caribbean island nations, Colombia, Venezuela, and northeast Brazil for most of the year. Several South Pacific countries also experienced drought. Lack of rainfall across Ethiopia led to its worst drought in decades and affected millions of people, while prolonged drought in South Africa severely affected agricultural production. Indian summer monsoon rainfall was just 86% of average. Extremely dry conditions in Indonesia resulted in intense and widespread fires during August\u2013November that produced abundant carbonaceous aerosols, carbon monoxide, and ozone. Overall, emissions from tropical Asian biomass burning in 2015 were almost three times the 2001\u201314 average