314 research outputs found
On the and as Bound States and Approximate Nambu-Goldstone Bosons
We reconsider the two different facets of and mesons as
bound states and approximate Nambu-Goldstone bosons. We address several topics,
including masses, mass splittings between and and between and
, meson wavefunctions, charge radii, and the wavefunction overlap.Comment: 15 pages, late
The scintillation and ionization yield of liquid xenon for nuclear recoils
XENON10 is an experiment designed to directly detect particle dark matter. It
is a dual phase (liquid/gas) xenon time-projection chamber with 3D position
imaging. Particle interactions generate a primary scintillation signal (S1) and
ionization signal (S2), which are both functions of the deposited recoil energy
and the incident particle type. We present a new precision measurement of the
relative scintillation yield \leff and the absolute ionization yield Q_y, for
nuclear recoils in xenon. A dark matter particle is expected to deposit energy
by scattering from a xenon nucleus. Knowledge of \leff is therefore crucial for
establishing the energy threshold of the experiment; this in turn determines
the sensitivity to particle dark matter. Our \leff measurement is in agreement
with recent theoretical predictions above 15 keV nuclear recoil energy, and the
energy threshold of the measurement is 4 keV. A knowledge of the ionization
yield \Qy is necessary to establish the trigger threshold of the experiment.
The ionization yield \Qy is measured in two ways, both in agreement with
previous measurements and with a factor of 10 lower energy threshold.Comment: 8 pages, 9 figures. To be published in Nucl. Instrum. Methods
Design and Performance of the XENON10 Dark Matter Experiment
XENON10 is the first two-phase xenon time projection chamber (TPC) developed
within the XENON dark matter search program. The TPC, with an active liquid
xenon (LXe) mass of about 14 kg, was installed at the Gran Sasso underground
laboratory (LNGS) in Italy, and operated for more than one year, with excellent
stability and performance. Results from a dark matter search with XENON10 have
been published elsewhere. In this paper, we summarize the design and
performance of the detector and its subsystems, based on calibration data using
sources of gamma-rays and neutrons as well as background and Monte Carlo
simulations data. The results on the detector's energy threshold, energy and
position resolution, and overall efficiency show a performance that exceeds
design specifications, in view of the very low energy threshold achieved (<10
keVr) and the excellent energy resolution achieved by combining the ionization
and scintillation signals, detected simultaneously
Defective removal of ribonucleotides from DNA promotes systemic autoimmunity
Genome integrity is continuously challenged by the DNA damage that arises during normal cell metabolism. Biallelic mutations in the genes encoding the genome surveillance enzyme ribonuclease H2 (RNase H2) cause Aicardi-Goutières syndrome (AGS), a pediatric disorder that shares features with the autoimmune disease systemic lupus erythematosus (SLE). Here we determined that heterozygous parents of AGS patients exhibit an intermediate autoimmune phenotype and demonstrated a genetic association between rare RNASEH2 sequence variants and SLE. Evaluation of patient cells revealed that SLE- and AGS-associated mutations impair RNase H2 function and result in accumulation of ribonucleotides in genomic DNA. The ensuing chronic low level of DNA damage triggered a DNA damage response characterized by constitutive p53 phosphorylation and senescence. Patient fibroblasts exhibited constitutive upregulation of IFN-stimulated genes and an enhanced type I IFN response to the immunostimulatory nucleic acid polyinosinic:polycytidylic acid and UV light irradiation, linking RNase H2 deficiency to potentiation of innate immune signaling. Moreover, UV-induced cyclobutane pyrimidine dimer formation was markedly enhanced in ribonucleotide-containing DNA, providing a mechanism for photosensitivity in RNase H2-associated SLE. Collectively, our findings implicate RNase H2 in the pathogenesis of SLE and suggest a role of DNA damage-associated pathways in the initiation of autoimmunity
Susceptibility to chronic mucus hypersecretion, a genome wide association study
Background: Chronic mucus hypersecretion (CMH) is associated with an increased frequency of respiratory infections, excess lung function decline, and increased hospitalisation and mortality rates in the general population. It is associated with smoking, but it is unknown why only a minority of smokers develops CMH. A plausible explanation for this phenomenon is a predisposing genetic constitution. Therefore, we performed a genome wide association (GWA) study of CMH in Caucasian populations. Methods: GWA analysis was performed in the NELSON-study using the Illumina 610 array, followed by replication and meta-analysis in 11 additional cohorts. In total 2,704 subjects with, and 7,624 subjects without CMH were included, all current or former heavy smokers (≥20 pack-years). Additional studies were performed to test the functional relevance of the most significant single nucleotide polymorphism (SNP). Results: A strong association with CMH, consistent across all cohorts, was observed with rs6577641 (p = 4.25x10-6, OR = 1.17), located in intron 9 of the special AT-rich sequence-binding protein 1 locus (SATB1) on chromosome 3. The risk allele (G) was associated with higher mRNA expression of SATB1 (4.3x10 -9) in lung tissue. Presence of CMH was associated with increased SATB1 mRNA expression in bronchial biopsies from COPD patients. SATB1 expression was induced during differentiation of primary human bronchial epithelial cells in culture. Conclusions: Our findings, that SNP rs6577641 is associated with CMH in multiple cohorts and is a cis-eQTL for SATB1, together with our additional observation that SATB1 expression increases during epithelial differentiation provide suggestive evidence that SATB1 is a gene that affects CMH
Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment
LUX-ZEPLIN (LZ) is a next-generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7 tonnes, LZ will search primarily for low-energy interactions with weakly interacting massive particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000 live day run using a 5.6-tonne fiducial mass, LZ is projected to exclude at 90% confidence level spin-independent WIMP-nucleon cross sections above 1.4 × 10-48cm2 for a 40 GeV/c2 mass WIMP.
Additionally, a 5σ discovery potential is projected, reaching cross sections below the exclusion limits of recent experiments. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of 2.3 × 10−43 cm2 (7.1 × 10−42 cm2) for a 40 GeV/c2
mass WIMP is expected. With underground installation well underway, LZ is on track for commissioning at SURF in 2020
Updated precision measurement of the average lifetime of B hadrons
The measurement of the average lifetime of B hadrons using inclusively reconstructed secondary vertices has been updated using both an improved processing of previous data and additional statistics from new data. This has reduced the statistical and systematic uncertainties and gives \tau_{\mathrm{B}} = 1.582 \pm 0.011\ \mathrm{(stat.)} \pm 0.027\ \mathrm{(syst.)}\ \mathrm{ps.} Combining this result with the previous result based on charged particle impact parameter distributions yields \tau_{\mathrm{B}} = 1.575 \pm 0.010\ \mathrm{(stat.)} \pm 0.026\ \mathrm{(syst.)}\ \mathrm{ps.
Limits on the production of scalar leptoquarks from Z (0) decays at LEP
A search has been made for pairs and for single production of scalar leptoquarks of the first and second generations using a data sample of 392000 Z0 decays from the DELPHI detector at LEP 1. No signal was found and limits on the leptoquark mass, production cross section and branching ratio were set. A mass limit at 95% confidence level of 45.5 GeV/c2 was obtained for leptoquark pair production. The search for the production of a single leptoquark probed the mass region above this limit and its results exclude first and second generation leptoquarks D0 with masses below 65 GeV/c2 and 73 GeV/c2 respectively, at 95% confidence level, assuming that the D0lq Yukawa coupling alpha(lambda) is equal to the electromagnetic one. An upper limit is also given on the coupling alpha(lambda) as a function of the leptoquark mass m(D0)
- …