1,927 research outputs found
Efficient photon counting and single-photon generation using resonant nonlinear optics
The behavior of an atomic double lambda system in the presence of a strong
off-resonant classical field and a few-photon resonant quantum field is
examined. It is shown that the system possesses properties that allow a
single-photon state to be distilled from a multi-photon input wave packet. In
addition, the system is also capable of functioning as an efficient
photodetector discriminating between one- and two-photon wave packets with
arbitrarily high efficiency.Comment: 4 pages, 2 figure
Quantum theory of resonantly enhanced four-wave mixing: mean-field and exact numerical solutions
We present a full quantum analysis of resonant forward four-wave mixing based
on electromagnetically induced transparency (EIT). In particular, we study the
regime of efficient nonlinear conversion with low-intensity fields that has
been predicted from a semiclassical analysis. We derive an effective nonlinear
interaction Hamiltonian in the adiabatic limit. In contrast to conventional
nonlinear optics this Hamiltonian does not have a power expansion in the fields
and the conversion length increases with the input power. We analyze the
stationary wave-mixing process in the forward scattering configuration using an
exact numerical analysis for up to input photons and compare the results
with a mean-field approach. Due to quantum effects, complete conversion from
the two pump fields into the signal and idler modes is achieved only
asymptotically for large coherent pump intensities or for pump fields in
few-photon Fock states. The signal and idler fields are perfectly quantum
correlated which has potential applications in quantum communication schemes.
We also discuss the implementation of a single-photon phase gate for continuous
quantum computation.Comment: 10 pages, 11 figure
The Malingering of Psychotic Disorders
The phenomenon of malingered psychosis is examined through a review of the available literature. Possible motivations for malingering are discussed, and clinical indicators of feigned psychotic symptoms are reviewed. The methods discussed focus on the inpatient evaluation of suspected malingerers and include discussions of interview techniques and psychometric testing to supplement clinical impressions. A differential diagnosis is presented, and techniques for confronting a malingering patient are reviewed
Full quantum solutions to the resonant four-wave mixing of two single-photon wave packets
We analyze both analytically and numerically the resonant four-wave mixing of
two co-propagating single-photon wave packets. We present analytic expressions
for the two-photon wave function and show that soliton-type quantum solutions
exist which display a shape-preserving oscillatory exchange of excitations
between the modes. Potential applications including quantum information
processing are discussed.Comment: 7 pages, 3 figure
Recommended from our members
Evidence for suboxic nitrification in recent marine sediments
The classical scheme of biogeochemical zones (BGZ) is known to be an oversimplification
of the microbial processes that occur in organic-rich marine sediments. Results from a coupled
deployment of pore-water gel probes in Loch Duich, Scotland, provide direct evidence for rapid
recycling within the iron reduction (FeR) and sulphate reduction (SR) zones. High resolution porewater
profiles obtained using diffusive equilibrium in thin films (DET) gel probes found a nitrate peak
at the boundary between the FeR and SR zones. This non-steady state feature is consistent with recycling
of reduced N occurring throughout the FeR zone. Both conventional pore-water iron profiles
and results from diffusive gradient in thin films (DGT) probes indicate that iron is solubilised and precipitated
in rapid Fe/S recycling reactions throughout the SR zone. The presence of such complex
recycling reactions confirms the oversimplification of the classical BGZ scheme
Efficient Raman Sideband Generation in a Coherent Atomic Medium
We demonstrate the efficient generation of Raman sidebands in a medium
coherently prepared in a dark state by continuous-wave low-intensity laser
radiation. Our experiment is performed in sodium vapor excited in
configuration on the D line by two laser fields of resonant frequencies
and , and probed by a third field .
First-order sidebands for frequencies , and up to the
third-order sidebands for frequency are observed. The generation
starts at a power as low as 10 microwatt for each input field. Dependencies of
the intensities of both input and generated waves on the frequency difference
(), on the frequency and on the optical
density are investigated.Comment: 7 pages, 6 figure
Anoxic nitrification in marine sediments
Nitrate peaks are found in pore-water profiles in marine sediments at depths considerably
below the conventional zone of oxic nitrification. These have been interpreted to represent nonsteady-
state effects produced by the activity of nitrifying bacteria, and suggest that nitrification
occurs throughout the anoxic sediment region. In this study, ΣNO3 peaks and molecular analysis of
DNA and RNA extracted from anoxic sediments of Loch Duich, an organic-rich marine fjord, are consistent
with nitrification occurring in the anoxic zone. Analysis of ammonia oxidiser 16S rRNA gene
fragments amplified from sediment DNA indicated the abundance of autotrophic ammonia-oxidising
bacteria throughout the sediment depth sampled (40 cm), while RT-PCR analysis indicated their
potential activity throughout this region. A large non-steady-state pore-water ΣNO3 peak at ~21 cm
correlated with discontinuities in this ammonia-oxidiser community. In addition, a subsurface nitrate
peak at ~8 cm below the oxygen penetration depth, correlated with the depth of a peak in nitrification
rate, assessed by transformation of 15N-labelled ammonia. The source of the oxidant required to
support nitrification within the anoxic region is uncertain. It is suggested that rapid recycling of N is
occurring, based on a coupled reaction involving Mn oxides (or possibly highly labile Fe oxides)
buried during small-scale slumping events. However, to fully investigate this coupling, advances in
the capability of high-resolution pore-water techniques are required
Low-light-level nonlinear optics with slow light
Electromagnetically induced transparency in an optically thick, cold medium
creates a unique system where pulse-propagation velocities may be orders of
magnitude less than and optical nonlinearities become exceedingly large. As
a result, nonlinear processes may be efficient at low-light levels. Using an
atomic system with three, independent channels, we demonstrate a quantum
interference switch where a laser pulse with an energy density of
photons per causes a 1/e absorption of a second pulse.Comment: to be published in PR
Resonantly enhanced nonlinear optics in semiconductor quantum wells: An application to sensitive infrared detection
A novel class of coherent nonlinear optical phenomena, involving induced
transparency in quantum wells, is considered in the context of a particular
application to sensitive long-wavelength infrared detection. It is shown that
the strongest decoherence mechanisms can be suppressed or mitigated, resulting
in substantial enhancement of nonlinear optical effects in semiconductor
quantum wells.Comment: 4 pages, 3 figures, replaced with revised versio
Cancer experience in the relatives of an unselected series of breast cancer patients
First- and second-degree relatives of an unselected series of 402 breast cancer patients have been studied for their cancer experience. In the first-degree relatives an excess of all cancers is seen [overall relative risk (RR) = 1.28, P = 0.002; males RR = 1.26, P = 0.047; females RR = 1.30, P = 0.022). There is a marked excess of sarcoma (RR = 4.26, P = 0.0064); females are at high risk of breast cancer (RR = 2.68, P < 0.0001) and males have an excess of carcinoma of the lip, oral cavity and pharynx (RR = 4.22, P = 0.0032). Second-degree relatives have a non-significant excess of all cancers (RR = 1.14, P = 0.14); females have a borderline excess of breast cancer (RR = 1.53, P = 0.08) and an excess of carcinoma of the kidney (RR = 7.46, P = 0.0012) and males have an excess of carcinoma of the trachea and lung (RR = 1.50, P = 0.032). No excess of prostate or ovarian carcinoma was seen. Relatives are at slightly higher risk if the index patient is diagnosed between the ages of 40 and 49 (first-degree RR = 1.64, P = 0.007; second-degree RR = 1.43, P = 0.02). The excess of cancers, including breast cancers, is not limited to a few high-risk families, but appears to be spread across many. These observations may be accounted for by shared environmental factors within families or a common predisposing gene with low penetrance
- …