8 research outputs found

    Integrated Multimodal Analyses of DNA Damage Response and Immune Markers as Predictors of Response in Metastatic Triple-Negative Breast Cancer in the TNT Trial (NCT00532727)

    Get PDF
    Purpose: The TNT trial (NCT00532727) showed no evidence of carboplatin superiority over docetaxel in metastatic triple-negative breast cancer (mTNBC), but carboplatin benefit was observed in the germline BRCA1/2 mutation subgroup. Broader response-predictive biomarkers are needed. We explored the predictive ability of DNA damage response (DDR) and immune markers. Experimental Design: Tumor-infiltrating lymphocytes were evaluated for 222 of 376 patients. Primary tumors (PT) from 186 TNT participants (13 matched recurrences) were profiled using total RNA sequencing. Four transcriptional DDR-related and 25 immune-related signatures were evaluated. We assessed their association with objective response rate (ORR) and progression-free survival (PFS). Conditional inference forest clustering was applied to integrate multimodal data. The biology of subgroups was characterized by 693 gene expression modules and other markers. Results: Transcriptional DDR-related biomarkers were not predictive of ORR to either treatment overall. Changes from PT to recurrence were demonstrated; in chemotherapy-naïve patients, transcriptional DDR markers separated carboplatin responders from nonresponders (P values = 0.017; 0.046). High immune infiltration was associated with docetaxel ORR (interaction P values < 0.05). Six subgroups were identified; the immune-enriched cluster had preferential docetaxel response [62.5% (D) vs. 29.4% (C); P = 0.016]. The immune-depleted cluster had preferential carboplatin response [8.0% (D) vs. 40.0% (C); P = 0.011]. DDR-related subgroups were too small to assess ORR. Conclusions: High immune features predict docetaxel response, and high DDR signature scores predict carboplatin response in treatment-naïve mTNBC. Integrating multimodal DDR and immune-related markers identifies subgroups with differential treatment sensitivity. Treatment options for patients with immune-low and DDR-proficient tumors remains an outstanding need. Caution is needed using PT-derived transcriptional signatures to direct treatment in mTNBC, particularly DDR-related markers following prior chemotherapy

    Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials

    Get PDF
    Stromal tumor-infiltrating lymphocytes (sTILs) are a potential predictive biomarker for immunotherapy response in metastatic triple-negative breast cancer (TNBC). To incorporate sTILs into clinical trials and diagnostics, reliable assessment is essential. In this review, we propose a new concept, namely the implementation of a risk-management framework that enables the use of sTILs as a stratification factor in clinical trials. We present the design of a biomarker risk-mitigation workflow that can be applied to any biomarker incorporation in clinical trials. We demonstrate the implementation of this concept using sTILs as an integral biomarker in a single-center phase II immunotherapy trial for metastatic TNBC (TONIC trial, NCT02499367), using this workflow to mitigate risks of suboptimal inclusion of sTILs in this specific trial. In this review, we demonstrate that a web-based scoring platform can mitigate potential risk factors when including sTILs in clinical trials, and we argue that this framework can be applied for any future biomarker-driven clinical trial setting

    HER2-enriched subtype and novel molecular subgroups drive aromatase inhibitor resistance and an increased risk of relapse in early ER+/HER2+ breast cancer

    Get PDF
    Background Oestrogen receptor positive/ human epidermal growth factor receptor positive (ER+/HER2+) breast cancers (BCs) are less responsive to endocrine therapy than ER+/HER2- tumours. Mechanisms underpinning the differential behaviour of ER+HER2+ tumours are poorly characterised. Our aim was to identify biomarkers of response to 2 weeks’ presurgical AI treatment in ER+/HER2+ BCs. Methods All available ER+/HER2+ BC baseline tumours (n=342) in the POETIC trial were gene expression profiled using BC360™ (NanoString) covering intrinsic subtypes and 46 key biological signatures. Early response to AI was assessed by changes in Ki67 expression and residual Ki67 at 2 weeks (Ki672wk). Time-To-Recurrence (TTR) was estimated using Kaplan-Meier methods and Cox models adjusted for standard clinicopathological variables. New molecular subgroups (MS) were identified using consensus clustering. Findings HER2-enriched (HER2-E) subtype BCs (44.7% of the total) showed poorer Ki67 response and higher Ki672wk (p<0.0001) than non-HER2-E BCs. High expression of ERBB2 expression, homologous recombination deficiency (HRD) and TP53 mutational score were associated with poor response and immune-related signatures with High Ki672wk. Five new MS that were associated with differential response to AI were identified. HER2-E had significantly poorer TTR compared to Luminal BCs (HR 2.55, 95% CI 1.14–5.69; p=0.0222). The new MS were independent predictors of TTR, adding significant value beyond intrinsic subtypes. Interpretation Our results show HER2-E as a standardised biomarker associated with poor response to AI and worse outcome in ER+/HER2+. HRD, TP53 mutational score and immune-tumour tolerance are predictive biomarkers for poor response to AI. Lastly, novel MS identify additional non-HER2-E tumours not responding to AI with an increased risk of relapse. Funding Cancer Research UK (CRUK/07/015)

    Disruption of the Y-Box Binding Protein-1 Reults in Suppression of the Epidermal Growth Factor Receptor and HER-2

    No full text
    The journal Cancer Research is the original source of the material
    corecore