49 research outputs found
Causality and the speed of sound
A usual causal requirement on a viable theory of matter is that the speed of
sound be at most the speed of light. In view of various recent papers querying
this limit, the question is revisited here. We point to various issues
confronting theories that violate the usual constraint.Comment: v2: additional discussion on models that appear to have superluminal
signal speeds; version to appear in GR
Mining metrics for buried treasure
The same but different: That might describe two metrics. On the surface
CLASSI may show two metrics are locally equivalent, but buried beneath one may
be a wealth of further structure. This was beautifully described in a paper by
M.A.H. MacCallum in 1998. Here I will illustrate the effect with two flat
metrics -- one describing ordinary Minkowski spacetime and the other describing
a three-parameter family of Gal'tsov-Letelier-Tod spacetimes. I will dig out
the beautiful hidden classical singularity structure of the latter (a structure
first noticed by Tod in 1994) and then show how quantum considerations can
illuminate the riches. I will then discuss how quantum structure can help us
understand classical singularities and metric parameters in a variety of exact
solutions mined from the Exact Solutions book.Comment: 16 pages, no figures, minor grammatical changes, submitted to
Proceedings of the Malcolm@60 Conference (London, July 2004
Generalized Quantum Theory of Recollapsing Homogeneous Cosmologies
A sum-over-histories generalized quantum theory is developed for homogeneous
minisuperspace type A Bianchi cosmological models, focussing on the particular
example of the classically recollapsing Bianchi IX universe. The decoherence
functional for such universes is exhibited. We show how the probabilities of
decoherent sets of alternative, coarse-grained histories of these model
universes can be calculated. We consider in particular the probabilities for
classical evolution defined by a suitable coarse-graining. For a restricted
class of initial conditions and coarse grainings we exhibit the approximate
decoherence of alternative histories in which the universe behaves classically
and those in which it does not. For these situations we show that the
probability is near unity for the universe to recontract classically if it
expands classically. We also determine the relative probabilities of
quasi-classical trajectories for initial states of WKB form, recovering for
such states a precise form of the familiar heuristic "J d\Sigma" rule of
quantum cosmology, as well as a generalization of this rule to generic initial
states.Comment: 41 pages, 4 eps figures, revtex 4. Modest revisions throughout.
Physics unchanged. To appear in Phys. Rev.
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Community building through intergenerational exchange programs: Report to the National Youth Affairs Research Scheme (NYARS)
Initiatives designed to support young people’s engagement, participation and civic involvement with community have grown in popularity in Australia over the past decade. This is coincident with an increased emphasis on communitarian aspirations such as building community, promoting civics and encouraging social capital (Bessant, 1997; Botsman & Latham, 2001; Brennan, 1998; Harris, 1999). In this new policy environment, young people’s social problems, issues and needs are largely seen as a reflection of their declining levels of inclusion in civic life, a loss in community, a failure on the part of local associations to encourage social cohesion at the local level and a growing distance between the generations. According to those advancing this style of social policy, something has gone awfully wrong with the social fabric, community participation is dropping and different generations are becoming cut off from each other. The answer is often seen to be in interventions that develop social capital, build community capacity, encourage partnerships, support community enterprise, and strengthen democratic and civic participation. Precisely what this means, or how it might be achieved in youth practice settings, is not clear.
Intergenerational practice has emerged as one general approach that may help put substance to aspirations for bringing young people into closer contact with others in their community. Although as yet not a significant part of the Australian policy landscape, the field of intergenerational practice has gained considerable support in the United States and is growing rapidly in Europe
Recommended from our members
Time sequence of events leading to chromosomal aberration formation
Investigations have been carried out on the influence of the repair polymerases on the yield of different types of chromosomal aberrations. The studies were mainly concerned with the effect of inhibiting the polymerases on the yield of aberrations. The polymerases fill in single-strand regions, and the fact that their inhibition affects the yield of aberrations suggests that single-strand lesions are influential in aberration formation. The results indicate that there are two actions of polymerases in clastogenesis. One is in their involvement in a G[sub 2] repair system, in which either of the two chromatids is concerned, and which does not yield aberrations unless the inhibition is still operating when the cells enter mitosis. The second is such that when repair is inhibited, further damage accrues. The second action is affected by inhibiting polymerase repair, but also operates even when the repair enzymes are active. The production of chromosomal exchanges involves a series of reactions, some of which are reversible. The time span over which the reactions occur is much longer than has been envisaged previously