237 research outputs found

    Geodesic Flow on the Normal Congruence of a Minimal Surface

    Full text link
    We study the geodesic flow on the normal line congruence of a minimal surface in R3{\Bbb{R}}^3 induced by the neutral K\"ahler metric on the space of oriented lines. The metric is lorentz with isolated degenerate points and the flow is shown to be completely integrable. In addition, we give a new holomorphic description of minimal surfaces in R3{\Bbb{R}}^3 and relate it to the classical Weierstrass representation.Comment: AMS-LATEX 8 pages 2, figure

    Virtual Structure Constants as Intersection Numbers of Moduli Space of Polynomial Maps with Two Marked Points

    Full text link
    In this paper, we derive the virtual structure constants used in mirror computation of degree k hypersurface in CP^{N-1}, by using localization computation applied to moduli space of polynomial maps from CP^{1} to CP^{N-1} with two marked points. We also apply this technique to non-nef local geometry O(1)+O(-3)->CP^{1} and realize mirror computation without using Birkhoff factorization.Comment: 10 pages, latex, a minor change in Section 4, English is refined, Some typing errors in Section 3 are correcte

    Reducible connections and non-local symmetries of the self-dual Yang-Mills equations

    Get PDF
    We construct the most general reducible connection that satisfies the self-dual Yang-Mills equations on a simply connected, open subset of flat R4\mathbb{R}^4. We show how all such connections lie in the orbit of the flat connection on R4\mathbb{R}^4 under the action of non-local symmetries of the self-dual Yang-Mills equations. Such connections fit naturally inside a larger class of solutions to the self-dual Yang-Mills equations that are analogous to harmonic maps of finite type.Comment: AMSLatex, 15 pages, no figures. Corrected in line with the referee's comments. In particular, restriction to simply-connected open sets now explicitly stated. Version to appear in Communications in Mathematical Physic

    Generalized DPW method and an application to isometric immersions of space forms

    Full text link
    Let GG be a complex Lie group and ΛG\Lambda G denote the group of maps from the unit circle S1{\mathbb S}^1 into GG, of a suitable class. A differentiable map FF from a manifold MM into ΛG\Lambda G, is said to be of \emph{connection order (ab)(_a^b)} if the Fourier expansion in the loop parameter λ\lambda of the S1{\mathbb S}^1-family of Maurer-Cartan forms for FF, namely F_\lambda^{-1} \dd F_\lambda, is of the form ∑i=abαiλi\sum_{i=a}^b \alpha_i \lambda^i. Most integrable systems in geometry are associated to such a map. Roughly speaking, the DPW method used a Birkhoff type splitting to reduce a harmonic map into a symmetric space, which can be represented by a certain order (−11)(_{-1}^1) map, into a pair of simpler maps of order (−1−1)(_{-1}^{-1}) and (11)(_1^1) respectively. Conversely, one could construct such a harmonic map from any pair of (−1−1)(_{-1}^{-1}) and (11)(_1^1) maps. This allowed a Weierstrass type description of harmonic maps into symmetric spaces. We extend this method to show that, for a large class of loop groups, a connection order (ab)(_a^b) map, for a<0<ba<0<b, splits uniquely into a pair of (a−1)(_a^{-1}) and (1b)(_1^b) maps. As an application, we show that constant non-zero curvature submanifolds with flat normal bundle of a sphere or hyperbolic space split into pairs of flat submanifolds, reducing the problem (at least locally) to the flat case. To extend the DPW method sufficiently to handle this problem requires a more general Iwasawa type splitting of the loop group, which we prove always holds at least locally.Comment: Some typographical correction

    GG-Strands

    Get PDF
    A GG-strand is a map g(t,s): R×R→Gg(t,{s}):\,\mathbb{R}\times\mathbb{R}\to G for a Lie group GG that follows from Hamilton's principle for a certain class of GG-invariant Lagrangians. The SO(3)-strand is the GG-strand version of the rigid body equation and it may be regarded physically as a continuous spin chain. Here, SO(3)KSO(3)_K-strand dynamics for ellipsoidal rotations is derived as an Euler-Poincar\'e system for a certain class of variations and recast as a Lie-Poisson system for coadjoint flow with the same Hamiltonian structure as for a perfect complex fluid. For a special Hamiltonian, the SO(3)KSO(3)_K-strand is mapped into a completely integrable generalization of the classical chiral model for the SO(3)-strand. Analogous results are obtained for the Sp(2)Sp(2)-strand. The Sp(2)Sp(2)-strand is the GG-strand version of the Sp(2)Sp(2) Bloch-Iserles ordinary differential equation, whose solutions exhibit dynamical sorting. Numerical solutions show nonlinear interactions of coherent wave-like solutions in both cases. Diff(R){\rm Diff}(\mathbb{R})-strand equations on the diffeomorphism group G=Diff(R)G={\rm Diff}(\mathbb{R}) are also introduced and shown to admit solutions with singular support (e.g., peakons).Comment: 35 pages, 5 figures, 3rd version. To appear in J Nonlin Sc

    Classification and nondegeneracy of SU(n+1)SU(n+1) Toda system with singular sources

    Full text link
    We consider the following Toda system \Delta u_i + \D \sum_{j = 1}^n a_{ij}e^{u_j} = 4\pi\gamma_{i}\delta_{0} \text{in}\mathbb R^2, \int_{\mathbb R^2}e^{u_i} dx -1,, \delta_0isDiracmeasureat0,andthecoefficients is Dirac measure at 0, and the coefficients a_{ij}formthestandardtri−diagonalCartanmatrix.Inthispaper,(i)wecompletelyclassifythesolutionsandobtainthequantizationresult: form the standard tri-diagonal Cartan matrix. In this paper, (i) we completely classify the solutions and obtain the quantization result: ∑j=1naij∫R2eujdx=4π(2+γi+γn+1−i),    ∀  1≤i≤n.\sum_{j=1}^n a_{ij}\int_{\R^2}e^{u_j} dx = 4\pi (2+\gamma_i+\gamma_{n+1-i}), \;\;\forall\; 1\leq i \leq n.ThisgeneralizestheclassificationresultbyJostandWangfor This generalizes the classification result by Jost and Wang for \gamma_i=0,, \forall \;1\leq i\leq n.(ii)Weprovethatif. (ii) We prove that if \gamma_i+\gamma_{i+1}+...+\gamma_j \notin \mathbb Zforall for all 1\leq i\leq j\leq n,thenanysolution, then any solution u_i$ is \textit{radially symmetric} w.r.t. 0. (iii) We prove that the linearized equation at any solution is \textit{non-degenerate}. These are fundamental results in order to understand the bubbling behavior of the Toda system.Comment: 28 page

    Human Resource Flexibility as a Mediating Variable Between High Performance Work Systems and Performance

    Get PDF
    Much of the human resource management literature has demonstrated the impact of high performance work systems (HPWS) on organizational performance. A new generation of studies is emerging in this literature that recommends the inclusion of mediating variables between HPWS and organizational performance. The increasing rate of dynamism in competitive environments suggests that measures of employee adaptability should be included as a mechanism that may explain the relevance of HPWS to firm competitiveness. On a sample of 226 Spanish firms, the study’s results confirm that HPWS influences performance through its impact on the firm’s human resource (HR) flexibility

    New constructions of twistor lifts for harmonic maps

    Get PDF
    We show that given a harmonic map φ\varphi from a Riemann surface to a classical compact simply connected inner symmetric space, there is a J2J_2-holomorphic twistor lift of φ\varphi (or its negative) if and only if it is nilconformal. In the case of harmonic maps of finite uniton number, we give algebraic formulae in terms of holomorphic data which describes their extended solutions. In particular, this gives explicit formulae for the twistor lifts of all harmonic maps of finite uniton number from a surface to the above symmetric spaces.Comment: Some minor changes and a correction of Example 8.

    Dressing with Control: using integrability to generate desired solutions to Einstein's equations

    Get PDF
    21 pages, no figures21 pages, no figures21 pages, no figures21 pages, no figuresMotivated by integrability of the sine-Gordon equation, we investigate a technique for constructing desired solutions to Einstein's equations by combining a dressing technique with a control-theory approach. After reviewing classical integrability, we recall two well-known Killing field reductions of Einstein's equations, unify them using a harmonic map formulation, and state two results on the integrability of the equations and solvability of the dressing system. The resulting algorithm is then combined with an asymptotic analysis to produce constraints on the degrees of freedom arising in the solution-generation mechanism. The approach is carried out explicitly for the Einstein vacuum equations. Applications of the technique to other geometric field theories are also discussed
    • …
    corecore