3 research outputs found

    The multi-stream flows and the dynamics of the cosmic web

    Full text link
    A new numerical technique to identify the cosmic web is proposed. It is based on locating multi-stream flows, i.e. the places where the velocity field is multi-valued. The method is local in Eulerian space, simple and computaionally efficient. This technique uses the velocities of particles and thus takes into account the dynamical information. This is in contrast with the majority of standard methods that use the coordinates of particles only. Two quantities are computed in every mesh cell: the mean and variance of the velocity field. In the cells where the velocity is single-valued the variance must be equal to zero exactly, therefore the cells with non-zero variance are identified as multi-stream flows. The technique has been tested in a N-body simulation of the \L CDM model. The preliminary analysis has shown that numerical noise does not pose a significant problem. The web identified by the new method has been compared with the web identified by the standard technique using only the particle coordinates. The comparison has shown overall similarity of two webs as expected, however they by no means are identical. For example, the isocontours of the corresponding fields have significantly different shapes and some density peaks of similar heights exhibit significant differences in the velocity variance and vice versa. This suggest that the density and velocity variance have a significant degree of independence. The shape of the two-dimensional pdf of density and velocity variance confirms this proposition. Thus, we conclude that the dynamical information probed by this technique introduces an additional dimension into analysis of the web.Comment: 19 pages, 10 figure

    Galaxy Alignments: Theory, Modelling & Simulations

    No full text

    The intrinsic alignment of galaxies and its impact on weak gravitational lensing in an era of precision cosmology

    No full text
    corecore