28,030 research outputs found

    Ising films with surface defects

    Full text link
    The influence of surface defects on the critical properties of magnetic films is studied for Ising models with nearest-neighbour ferromagnetic couplings. The defects include one or two adjacent lines of additional atoms and a step on the surface. For the calculations, both density-matrix renormalization group and Monte Carlo techniques are used. By changing the local couplings at the defects and the film thickness, non-universal features as well as interesting crossover phenomena in the magnetic exponents are observed.Comment: 8 pages, 12 figures included, submitted to European Physical Journal

    Formation of Electronic Nematic Phase in Interacting Systems

    Full text link
    We study the formation of an electronic nematic phase characterized by a broken point-group symmetry in interacting fermion systems within the weak coupling theory. As a function of interaction strength and chemical potential, the phase transition between the isotropic Fermi liquid and nematic phase is first order at zero temperature and becomes second order at a finite temperature. The transition is present for all typical, including quasi-2D, electronic dispersions on the square lattice and takes place for arbitrarily small interaction when at van Hove filling, thus suppressing the Lifshitz transition. In connection with the formation of the nematic phase, we discuss the origin of the first order transition and competition with other broken symmetry states.Comment: revtex4, 6 pages, 6 figures; revised introduction, updated reference

    Ising thin films with modulations and surface defects

    Full text link
    Properties of magnetic films are studied in the framework of Ising models. In particular, we discuss critical phenomena of ferromagnetic Ising films with straight lines of magnetic adatoms and straight steps on the surface as well as phase diagrams of the axial next-nearest neighbour Ising (ANNNI) model for thin films exhibiting various spatially modulated phases.Comment: 6 pages, 4 figures include

    More is Less: Perfectly Secure Oblivious Algorithms in the Multi-Server Setting

    Get PDF
    The problem of Oblivious RAM (ORAM) has traditionally been studied in a single-server setting, but more recently the multi-server setting has also been considered. Yet it is still unclear whether the multi-server setting has any inherent advantages, e.g., whether the multi-server setting can be used to achieve stronger security goals or provably better efficiency than is possible in the single-server case. In this work, we construct a perfectly secure 3-server ORAM scheme that outperforms the best known single-server scheme by a logarithmic factor. In the process, we also show, for the first time, that there exist specific algorithms for which multiple servers can overcome known lower bounds in the single-server setting.Comment: 36 pages, Accepted in Asiacrypt 201

    Effect of Media Strength and pH on the Growth of Hairy Roots and Production of Gymnemic Acid from Gymnema Sylvestre

    Get PDF
    Gymnema sylvestre (Madhunashini) is one of the most important medicinal plants used as a crude drug for its preventive and therapeutic properties. Among other constituents of Gymnema, gymnemic acid is a major component responsible for biological and pharmacological actions. The present study deals with the influence of different media strength and initial medium pH on the growth of hairy roots and gymnemic acid production from Gymnema sylvestre. Higher strength of the media (1.5X) favoured the biomass production (114.64 g/L FW and 12.63 g/L DW) and gymnemic acid content (11.7 mg/g DW) in the tested range of 0.25, 0.50, 0.75, 1.0, 1.5 and 2.0 X strength. Among the different hydrogen ion concentration (pH) of 4.0, 4.5, 5.0, 5.5, 5.8, 6.0 and 6.5, initial medium pH of 6.0 favoured the biomass production (102.41 g/L FW and 11.52 g/L DW) and medium pH of 5.8 favoured the gymnemic acid production (11.30 mg/g DW)

    Small x Behavior of Parton Distributions from the Observed Froissart Energy Dependence of the Deep Inelastic Scattering Cross Section

    Full text link
    We fit the reduced cross section for deep-inelastic electron scattering data to a three parameter ln^2 s fit, A + beta ln^2 (s/s_0), where s= [Q^2/x] (1-x) + m^2, and Q^2 is the virtuality of the exchanged photon. Over a wide range in Q^2 (0.11 < Q^2 < 1200 GeV^2) all of the fits satisfy the logarithmic energy dependence of the Froissart bound. We can use these results to extrapolate to very large energies and hence to very small values of Bjorken x -- well beyond the range accessible experimentally. As Q^2 --> infinity, the structure function F_2^p(x, Q^2) exhibits Bjorken scaling, within experimental errors. We obtain new constraints on the behavior of quark and antiquark distribution functions at small x.Comment: 10 pages, 2 figure

    Analytic Expression for the Joint x and Q^2 Dependences of the Structure Functions of Deep Inelastic Scattering

    Get PDF
    We obtain a good analytic fit to the joint Bjorken-x and Q^2 dependences of ZEUS data on the deep inelastic structure function F_2(x, Q^2). At fixed virtuality Q^2, as we showed previously, our expression is an expansion in powers of log (1/x) that satisfies the Froissart bound. Here we show that for each x, the Q^2 dependence of the data is well described by an expansion in powers of log Q^2. The resulting analytic expression allows us to predict the logarithmic derivatives {({\partial}^n F_2^p/{{(\partial\ln Q^2}})^n)}_x for n = 1,2 and to compare the results successfully with other data. We extrapolate the proton structure function F_2^p(x,Q^2) to the very large Q^2 and the very small x regions that are inaccessible to present day experiments and contrast our expectations with those of conventional global fits of parton distribution functions.Comment: 4 pages, 3 figures, a few changes in the text. Version to be published in Physical Review Letter
    • …
    corecore