14,384 research outputs found
Effects of vibration and shock on the performance of gas-bearing space-power Brayton cycle turbomachinery. Part 4: Suppression of rotor-bearing system vibrations through flexible bearing support damping
A bearing damper, operating on the support flexure of a pivoted pad in a tilting-pad type gas-lubricated journal bearing, has been designed, built, and tested under externally-applied random vibrations. The NASA Brayton Rotating Unit (BRU), a 36,000 rpm, 10-Kwe turbogenerator had previously been subjected in the MTI Vibration Test Laboratory to external random vibrations, and vibration response data had been recorded and analyzed for amplitude distribution and frequency content at a number of locations in the machine. Based on data from that evaluation, a piston-type damper was designed and developed for each of the two flexibly-supported journal bearing pads (one in each of the two three-pad bearings). A modified BRU, with dampers installed, has been re-tested under random vibration conditions. Root-mean-square vibration amplitudes were determined from the test data, and displacement power spectral density analyses have been performed. Results of these data reduction efforts have been compared with vibration tolerance limits. Results of the tests indicate significant reductions in vibration levels in the bearing gas-lubricant films, particularly in the rigidly-mounted pads. The utility of the gas-lubricated damper for limiting rotor-bearing system vibrations in high-speed turbomachinery has thus been demonstrated
Zero differential resistance in two-dimensional electron systems at large filling factors
We report on a state characterized by a zero differential resistance observed
in very high Landau levels of a high-mobility two-dimensional electron system.
Emerging from a minimum of Hall field-induced resistance oscillations at low
temperatures, this state exists over a continuous range of magnetic fields
extending well below the onset of the Shubnikov-de Haas effect. The minimum
current required to support this state is largely independent on the magnetic
field, while the maximum current increases with the magnetic field tracing the
onset of inter-Landau level scattering
An ultrafast 1 x M all-optical WDM packet-switched router based on the PPM header address
This paper presents an all-optical 1 x M WDM router architecture for packet routing at multiple wavelengths simultaneously, with no wavelength conversion modules. The packet header address adopted is based on the pulse position modulation (PPM) format, thus enabling the use of only a singlebitwise optical AND gate for fast header address correlation. It offers multicast as well as broadcast capabilities. It is shown that a high speed packet routing at 160 Gb/s can be achieved with a low channel crosstalk (CXT) of ~ -27 dB at a channel spacing of greater than 0.4 THz and a demultiplexer bandwidth of 500 GHz
Chiral Condensates in Quark and nuclear Matter
We present a novel treatment for calculating the in-medium quark condensates.
The advantage of this approach is that one does not need to make further
assumptions on the derivatives of model parameters with respect to the quark
current mass. The normally accepted model-independent result in nuclear matter
is naturally reproduced. The change of the quark condensate induced by
interactions depends on the incompressibility of nuclear matter. When it is
greater than 260 MeV, the density at which the condensate vanishes is higher
than that from the linear extrapolation. For the chiral condensate in quark
matter, a similar model-independent linear behavior is found at lower
densities, which means that the decreasing speed of the condensate in quark
matter is merely half of that in nuclear matter if the pion-nucleon sigma
commutator is six times the average current mass of u and d quarks. The
modification due to QCD-like interactions is found to slow the decreasing speed
of the condensate, compared with the linear extrapolation.Comment: 12 pages, 7 figures, revtex4 styl
Magnetotransport in a two-dimensional electron system in dc electric fields
We report on nonequilibrium transport measurements in a high-mobility
two-dimensional electron system subject to weak magnetic field and dc
excitation. Detailed study of dc-induced magneto-oscillations, first observed
by Yang {\em et al}., reveals a resonant condition that is qualitatively
different from that reported earlier. In addition, we observe dramatic
reduction of resistance induced by a weak dc field in the regime of separated
Landau levels. These results demonstrate similarity of transport phenomena in
dc-driven and microwave-driven systems and have important implications for
ongoing experimental search for predicted quenching of microwave-induced
zero-resistance states by a dc current.Comment: Revised version, to appear in Phys. Rev.
Flavor SU(3) symmetry and QCD factorization in and decays
Using flavor SU(3) symmetry, we perform a model-independent analysis of
charmless decays. All the relevant
topological diagrams, including the presumably subleading diagrams, such as the
QCD- and EW-penguin exchange diagrams and flavor-singlet weak annihilation
ones, are introduced. Indeed, the QCD-penguin exchange diagram turns out to be
important in understanding the data for penguin-dominated decay modes. In this
work we make efforts to bridge the (model-independent but less quantitative)
topological diagram or flavor SU(3) approach and the (quantitative but somewhat
model-dependent) QCD factorization (QCDF) approach in these decays, by
explicitly showing how to translate each flavor SU(3) amplitude into the
corresponding terms in the QCDF framework. After estimating each flavor SU(3)
amplitude numerically using QCDF, we discuss various physical consequences,
including SU(3) breaking effects and some useful SU(3) relations among decay
amplitudes of and .Comment: 47 pages, 3 figures, 28 table
Phase-sensitive quantum effects in Andreev conductance of the SNS system of metals with macroscopic phase breaking length
The dissipative component of electron transport through the doubly connected
SNS Andreev interferometer indium (S)-aluminium (N)-indium (S) has been
studied. Within helium temperature range, the conductance of the individual
sections of the interferometer exhibits phase-sensitive oscillations of
quantum-interference nature. In the non-domain (normal) state of indium
narrowing adjacent to NS interface, the nonresonance oscillations have been
observed, with the period inversely proportional to the area of the
interferometer orifice. In the domain intermediate state of the narrowing, the
magneto-temperature resistive oscillations appeared, with the period determined
by the coherence length in the magnetic field equal to the critical one. The
oscillating component of resonance form has been observed in the conductance of
the macroscopic N-aluminium part of the system. The phase of the oscillations
appears to be shifted by compared to that of nonresonance oscillations.
We offer an explanation in terms of the contribution into Josephson current
from the coherent quasiparticles with energies of order of the Thouless energy.
The behavior of dissipative transport with temperature has been studied in a
clean normal metal in the vicinity of a single point NS contact.Comment: 9 pages, 7 figures, to be published in Low Temp. Phys., v. 29, No.
12, 200
Long-Distance Contributions to D^0-D^0bar Mixing Parameters
Long-distance contributions to the - mixing parameters and
are evaluated using latest data on hadronic decays. In particular, we
take on two-body and decays to evaluate the contributions of
two-body intermediate states because they account for of hadronic
decays. Use of the diagrammatic approach has been made to estimate
yet-observed decay modes. We find that is of order a few
and of order from hadronic and modes. These are in good
agreement with the latest direct measurement of - mixing
parameters using the and decays by
BaBar. We estimate the contribution to from the modes using the
factorization model and comment on the single-particle resonance effects and
contributions from other two-body modes involving even-parity states.Comment: 18 pages and 1 figure; footnotes and references added; to appear in
Phys. Rev.
- …