52,031 research outputs found
Abelian Dominance in Wilson Loops
It has been conjectured that the Abelian projection of QCD is responsible for
the confinement of color. Using a gauge independent definition of the Abelian
projection which does {\it not} employ any gauge fixing, we provide a strong
evidence for the Abelian dominance in Wilson loop integral. In specific we
prove that the gauge potential which contributes to the Wilson loop integral is
precisely the one restricted by the Abelian projection.Comment: 4 pages, no figure, revtex. Phys. Rev. D in pres
Controlled Unitary Operation between Two Distant Atoms
We propose a scheme for implementing a controlled unitary gate between two
distant atoms directly communicating through a quantum transmission line. To
achieve our goal, only a series of several coherent pulses are applied to the
atoms. Our scheme thus requires no ancilla atomic qubit. The simplicity of our
scheme may significantly improve the scalability of quantum computers based on
trapped neutral atoms or ions
Color Reflection Invariance and Monopole Condensation in QCD
We review the quantum instability of the Savvidy-Nielsen-Olesen (SNO) vacuum
of the one-loop effective action of SU(2) QCD, and point out a critical defect
in the calculation of the functional determinant of the gluon loop in the SNO
effective action. We prove that the gauge invariance, in particular the color
reflection invariance, exclude the unstable tachyonic modes from the gluon loop
integral. This guarantees the stability of the magnetic condensation in QCD.Comment: 28 pages, 3 figures, JHEP styl
Geometrization of the Gauge Connection within a Kaluza-Klein Theory
Within the framework of a Kaluza-Klein theory, we provide the geometrization
of a generic (Abelian and non-Abelian) gauge coupling, which comes out by
choosing a suitable matter fields dependence on the extra-coordinates.
We start by the extension of the Nother theorem to a multidimensional
spacetime being the direct sum of a 4-dimensional Minkowski space and of a
compact homogeneous manifold (whose isometries reflect the gauge symmetry); we
show, how on such a ``vacuum'' configuration, the extra-dimensional components
of the field momentum correspond to the gauge charges. Then we analyze the
structure of a Dirac algebra as referred to a spacetime with the Kaluza-Klein
restrictions and, by splitting the corresponding free-field Lagrangian, we show
how the gauge coupling terms outcome.Comment: 10 pages, no figure, to appear on Int. Journ. Theor. Phy
Schwinger Effect in Non-parallel D1-branes: A Path Integral Approach
We study the Schwinger effect in a system of non-parallel D1-branes for the
bosonic strings using the path integral formalism. We drive the string pair
creation rate by calculating the one loop vacuum amplitude of the setup in
presence of the background electric filed defined along one of the D1-branes.
We find an angle dependent minimum value for the background field and show that
the decaying of vacuum into string pairs takes place for the field above this
value. It is shown that in limit the vacuum
becomes stable and thus no pair creation occurs
Resonating bipolarons
Electrons coupled to local lattice deformations end up in selftrapped
localized molecular states involving their binding into bipolarons when the
coupling is stronger than a certain critical value. Below that value they exist
as essentially itinerant electrons. We propose that the abrupt crossover
between the two regimes can be described by resonant pairing similar to the
Feshbach resonance in binary atomic collision processes. Given the
intrinsically local nature of the exchange of pairs of itinerant electrons and
localized bipolarons, we demonstrate the occurrence of such a resonance on a
finite-size cluster made out of metallic atoms surrounding a polaronic ligand
center.Comment: 7 pages, 4 figures, to be published in Europhysics Letter
Magnetic Moments of Heavy Baryons
First non-trivial chiral corrections to the magnetic moments of triplet (T)
and sextet (S^(*)) heavy baryons are calculated using Heavy Hadron Chiral
Perturbation Theory. Since magnetic moments of the T-hadrons vanish in the
limit of infinite heavy quark mass (m_Q->infinity), these corrections occur at
order O(1/(m_Q \Lambda_\chi^2)) for T-baryons while for S^(*)-baryons they are
of order O(1/\Lambda_\chi^2). The renormalization of the chiral loops is
discussed and relations among the magnetic moments of different hadrons are
provided. Previous results for T-baryons are revised.Comment: 11 Latex pages, 2 figures, to be published in Phys.Rev.
- …