130 research outputs found
In utero exposure to malaria is associated with metabolic traits in adolescence: The Agogo 2000 birth cohort study.
OBJECTIVES: Malaria in pregnancy (MiP) contributes to fetal undernutrition and adverse birth outcomes, and may constitute a developmental origin of metabolic diseases in the offspring. In a Ghanaian birth cohort, we examined the relationships between MiP-exposure and metabolic traits in adolescence. METHODS: MiP at delivery was assessed in 155 mother-child pairs. Among the now teenaged children (mean age, 14.8 years; 53% male), we measured fasting plasma glucose (FPG), body mass index (BMI), and systolic and diastolic blood pressure (BP). Associations of MiP with the adolescents' FPG, BMI, and BP were examined by linear regression. RESULTS: At delivery, 45% were MiP-exposed, which increased FPG in adolescence, adjusted for mother's age at delivery, parity and familial socio-economic status (infected vs. uninfected: mean ΔFPG = 0.20 mmol/L; 95% confidence interval (CI): 0.01, 0.39; p = 0.049). As a trend,this was discernible for BP, particularly for microscopic infections (mean Δsystolic BP = 5.43 mmHg; 95% CI: 0.00, 10.88; p = 0.050; mean Δdiastolic BP = 3.67 mmHg; 95% CI: -0.81, 8.14; p = 0.107). These associations were largely independent of birth weight, gestational age and teenage BMI. Adolescent BMI was not related to MiP. CONCLUSIONS: In rural Ghana, exposure to malaria during fetal development contributes to metabolic conditions in young adulthood
Increased plasma phenylacetic acid in patients with end-stage renal failure inhibits iNOS expression
The enzymatic activity of the VEGFR2-receptor for the biosynthesis of dinucleoside polyphosphates
The group of dinucleoside polyphosphates encompasses a large number of molecules consisting of two nucleosides which are connected by a phosphate chain of variable length. While the receptors activated by dinucleoside polyphosphates as well as their degradation have been studied in detail, its biosynthesis has not been elucidated so far. Since endothelial cells released the dinucleoside polyphosphate uridine adenosine tetraphosphate (Up4A), we tested cytosolic proteins of human endothelial cells obtained from dermal vessels elicited for enzymatic activity. When incubated with ADP and UDP, these cells showed increasing concentrations of Up4A. The underlying enzyme was isolated by chromatography and the mass spectrometric analysis revealed that the enzymatic activity was caused by the vascular endothelial growth factor receptor 2 (VEGFR2). Since VEGFR2 but neither VEGFR1 nor VEGFR3 were capable to synthesise dinucleoside polyphosphates, Tyr-1175 of VEGFR2 is most likely essential for the enzymatic activity of interest. Further, VEGFR2-containing cells like HepG2, THP-1 and RAW264.7 were capable of synthesising dinucleoside polyphosphates. VEGFR2-transfected HEK 293T/17 but not native HEK 293T/17 cells synthesised dinucleoside polyphosphates in vivo too. The simultaneous biosynthesis of dinucleoside polyphosphates could amplify the response to VEGF, since dinucleoside polyphosphates induce cellular growth via P2Y purinergic receptors. Thus the biosynthesis of dinucleoside polyphosphates by VEGFR2 may enhance the proliferative response to VEGF. Given that VEGFR2 is primarily expressed in endothelial cells, the biosynthesis of dinucleoside polyphosphates is mainly located in the vascular system. Since the vasculature is also the main site of action of dinucleoside polyphosphates, activating vascular purinoceptors, blood vessels appear as an autocrine system with respect to dinucleoside polyphosphates. We conclude that VEGFR2 receptor is capable of synthesising dinucleoside polyphosphates. These mediators may modulate the effects of VEGFR2 due to their proliferative effects
Uremic mouse model to study vascular calcification and “inflamm-aging”
Calcification and chronic inflammation of the vascular wall is a high-risk factor for cardiovascular mortality, especially in patients with chronic uremia. For the reduction or prevention of rapid disease progression, no specific treatment options are currently available. This study aimed to evaluate an adenine-based uremic mouse model for studying medial vessel calcification and senescence-associated secretory phenotype (SASP) changes of aortic tissue to unravel molecular pathogenesis and provide a model for therapy testing. The dietary adenine administration induced a stable and similar degree of chronic uremia in DBA2/N mice with an increase of uremia blood markers such as blood urea nitrogen, calcium, creatinine, alkaline phosphatase, and parathyroid hormone. Also, renal fibrosis and crystal deposits were detected upon adenine feeding. The uremic condition is related to a moderate to severe medial vessel calcification and subsequent elastin disorganization. In addition, expression of osteogenic markers as Bmp-2 and its transcription factor Sox-9 as well as p21 as senescence marker were increased in uremic mice compared to controls. Pro-inflammatory uremic proteins such as serum amyloid A, interleukin (I1)-1 beta, and I1-6 increased. This novel model of chronic uremia provides a simple method for investigation of signaling pathways in vascular inflammation and calcification and therefore offers an experimental basis for the development of potential therapeutic intervention studies
Temporary threshold shift after noise exposure in hypobaric hypoxia at high altitude: results of the ADEMED expedition 2011
Objectives
To evaluate whether there is an increased risk for noise-induced hearing loss at high altitude rsp. in hypobaric hypoxia.
Methods
Thirteen volunteers got standard audiometry at 125, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 6000, and 8000 Hz before and after 10 min of white noise at 90 dB. The system was calibrated for the respective altitude. Measurements were performed at Kathmandu (1400 m) and at Gorak Shep (5300 m) (Solo Khumbu/Nepal) after 10 days of acclimatization while on trek. Temporary threshold shift (TTS) was analyzed by descriptive statistics and by factor analysis.
Results
TTS is significantly more pronounced at high altitudes. Acclimatization does not provide any protection of the inner ear, although it increases arterial oxygen saturation.
Conclusion
The thresholds beyond which noise protection is recommended (> 80 dB) or necessary (> 85 dB) are not sufficient at high altitudes. We suggest providing protective devices above an altitude of 1500 m (“ear threshold altitude”) when noise level is higher than 75 dB and using them definitively above 80 dB. This takes the individual reaction on hypobaric hypoxia at high altitude into account
Etoposide upregulates survival favoring sphingosine-1-phosphate in etoposide-resistant retinoblastoma cells
Improved knowledge of retinoblastoma chemotherapy resistance is needed to raise treatment efficiency. The objective of this study was to test whether etoposide alters glucosyl-ceramide, ceramide, sphingosine, and sphingosine-1-phosphate (sphingosine-1-P) levels in parental retinoblastoma cells (WERI Rb1) or their etoposide-resistant subclones (WERI EtoR). WERI Rb1 and WERI EtoR were incubated with 400 ng/ml etoposide for 24 h. Levels of glucosyl-ceramides, ceramides, sphingosine, sphingosine-1-P were detected by Q-TOF mass spectrometry. Statistical analysis was done by ANOVA followed by Tukey post-hoc test (p 0.2). Both cell lines upregulate pro-apoptotic sphingosine after etoposide incubation, but only WERI EtoR produces additional survival favorable sphingosine-1-P. These data may suggest a role of sphingosine-1-P in retinoblastoma chemotherapy resistance, although this seems not to be the only resistance mechanism
- …