643 research outputs found

    Multimedia information technology and the annotation of video

    Get PDF
    The state of the art in multimedia information technology has not progressed to the point where a single solution is available to meet all reasonable needs of documentalists and users of video archives. In general, we do not have an optimistic view of the usability of new technology in this domain, but digitization and digital power can be expected to cause a small revolution in the area of video archiving. The volume of data leads to two views of the future: on the pessimistic side, overload of data will cause lack of annotation capacity, and on the optimistic side, there will be enough data from which to learn selected concepts that can be deployed to support automatic annotation. At the threshold of this interesting era, we make an attempt to describe the state of the art in technology. We sample the progress in text, sound, and image processing, as well as in machine learning

    Multimodal Classification of Urban Micro-Events

    Get PDF

    Learning visual contexts for image annotation from Flickr groups

    Get PDF

    NonFactS: NonFactual Summary Generation for Factuality Evaluation in Document Summarization

    Get PDF
    Pre-trained abstractive summarization models can generate fluent summaries and achieve high ROUGE scores. Previous research has found that these models often generate summaries that are inconsistent with their context document and contain nonfactual information. To evaluate factuality in document summarization, a document-level Natural Language Inference (NLI) classifier can be used. However, training such a classifier requires large-scale high-quality factual and nonfactual samples. To that end, we introduce NonFactS, a data generation model, to synthesize nonfactual summaries given a context document and a human-annotated (reference) factual summary. Compared to previous methods, our nonfactual samples are more abstractive and more similar to their corresponding factual samples, resulting in state-of-the-art performance on two factuality evaluation benchmarks, FALSESUM and SUMMAC. Our experiments demonstrate that even without human-annotated summaries, NonFactS can use random sentences to generate nonfactual summaries and a classifier trained on these samples generalizes to out-of-domain documents
    • …
    corecore