666 research outputs found
Global embedding of the Kerr black hole event horizon into hyperbolic 3-space
An explicit global and unique isometric embedding into hyperbolic 3-space,
H^3, of an axi-symmetric 2-surface with Gaussian curvature bounded below is
given. In particular, this allows the embedding into H^3 of surfaces of
revolution having negative, but finite, Gaussian curvature at smooth fixed
points of the U(1) isometry. As an example, we exhibit the global embedding of
the Kerr-Newman event horizon into H^3, for arbitrary values of the angular
momentum. For this example, considering a quotient of H^3 by the Picard group,
we show that the hyperbolic embedding fits in a fundamental domain of the group
up to a slightly larger value of the angular momentum than the limit for which
a global embedding into Euclidean 3-space is possible. An embedding of the
double-Kerr event horizon is also presented, as an example of an embedding
which cannot be made global.Comment: 16 pages, 13 figure
Constructing solutions to the Bj\"orling problem for isothermic surfaces by structure preserving discretization
In this article, we study an analog of the Bj\"orling problem for isothermic
surfaces (that are more general than minimal surfaces): given a real analytic
curve in , and two analytic non-vanishing orthogonal
vector fields and along , find an isothermic surface that is
tangent to and that has and as principal directions of
curvature. We prove that solutions to that problem can be obtained by
constructing a family of discrete isothermic surfaces (in the sense of Bobenko
and Pinkall) from data that is sampled along , and passing to the limit
of vanishing mesh size. The proof relies on a rephrasing of the
Gauss-Codazzi-system as analytic Cauchy problem and an in-depth-analysis of its
discretization which is induced from the geometry of discrete isothermic
surfaces. The discrete-to-continuous limit is carried out for the Christoffel
and the Darboux transformations as well.Comment: 29 pages, some figure
Absorbing boundary conditions for the Westervelt equation
The focus of this work is on the construction of a family of nonlinear
absorbing boundary conditions for the Westervelt equation in one and two space
dimensions. The principal ingredient used in the design of such conditions is
pseudo-differential calculus. This approach enables to develop high order
boundary conditions in a consistent way which are typically more accurate than
their low order analogs. Under the hypothesis of small initial data, we
establish local well-posedness for the Westervelt equation with the absorbing
boundary conditions. The performed numerical experiments illustrate the
efficiency of the proposed boundary conditions for different regimes of wave
propagation
Stimulus-dependent maximum entropy models of neural population codes
Neural populations encode information about their stimulus in a collective
fashion, by joint activity patterns of spiking and silence. A full account of
this mapping from stimulus to neural activity is given by the conditional
probability distribution over neural codewords given the sensory input. To be
able to infer a model for this distribution from large-scale neural recordings,
we introduce a stimulus-dependent maximum entropy (SDME) model---a minimal
extension of the canonical linear-nonlinear model of a single neuron, to a
pairwise-coupled neural population. The model is able to capture the
single-cell response properties as well as the correlations in neural spiking
due to shared stimulus and due to effective neuron-to-neuron connections. Here
we show that in a population of 100 retinal ganglion cells in the salamander
retina responding to temporal white-noise stimuli, dependencies between cells
play an important encoding role. As a result, the SDME model gives a more
accurate account of single cell responses and in particular outperforms
uncoupled models in reproducing the distributions of codewords emitted in
response to a stimulus. We show how the SDME model, in conjunction with static
maximum entropy models of population vocabulary, can be used to estimate
information-theoretic quantities like surprise and information transmission in
a neural population.Comment: 11 pages, 7 figure
Desingularization of vortices for the Euler equation
We study the existence of stationary classical solutions of the
incompressible Euler equation in the plane that approximate singular
stationnary solutions of this equation. The construction is performed by
studying the asymptotics of equation -\eps^2 \Delta
u^\eps=(u^\eps-q-\frac{\kappa}{2\pi} \log \frac{1}{\eps})_+^p with Dirichlet
boundary conditions and a given function. We also study the
desingularization of pairs of vortices by minimal energy nodal solutions and
the desingularization of rotating vortices.Comment: 40 page
The Topological B-model on a Mini-Supertwistor Space and Supersymmetric Bogomolny Monopole Equations
In the recent paper hep-th/0502076, it was argued that the open topological
B-model whose target space is a complex (2|4)-dimensional mini-supertwistor
space with D3- and D1-branes added corresponds to a super Yang-Mills theory in
three dimensions. Without the D1-branes, this topological B-model is equivalent
to a dimensionally reduced holomorphic Chern-Simons theory. Identifying the
latter with a holomorphic BF-type theory, we describe a twistor correspondence
between this theory and a supersymmetric Bogomolny model on R^3. The connecting
link in this correspondence is a partially holomorphic Chern-Simons theory on a
Cauchy-Riemann supermanifold which is a real one-dimensional fibration over the
mini-supertwistor space. Along the way of proving this twistor correspondence,
we review the necessary basic geometric notions and construct action
functionals for the involved theories. Furthermore, we discuss the geometric
aspect of a recently proposed deformation of the mini-supertwistor space, which
gives rise to mass terms in the supersymmetric Bogomolny equations. Eventually,
we present solution generating techniques based on the developed twistorial
description together with some examples and comment briefly on a twistor
correspondence for super Yang-Mills theory in three dimensions.Comment: 55 pages; v2: typos fixed, published versio
Localization on a quantum graph with a random potential on the edges
We prove spectral and dynamical localization on a cubic-lattice quantum graph
with a random potential. We use multiscale analysis and show how to obtain the
necessary estimates in analogy to the well-studied case of random Schroedinger
operators.Comment: LaTeX2e, 18 page
How Gibbs distributions may naturally arise from synaptic adaptation mechanisms. A model-based argumentation
This paper addresses two questions in the context of neuronal networks
dynamics, using methods from dynamical systems theory and statistical physics:
(i) How to characterize the statistical properties of sequences of action
potentials ("spike trains") produced by neuronal networks ? and; (ii) what are
the effects of synaptic plasticity on these statistics ? We introduce a
framework in which spike trains are associated to a coding of membrane
potential trajectories, and actually, constitute a symbolic coding in important
explicit examples (the so-called gIF models). On this basis, we use the
thermodynamic formalism from ergodic theory to show how Gibbs distributions are
natural probability measures to describe the statistics of spike trains, given
the empirical averages of prescribed quantities. As a second result, we show
that Gibbs distributions naturally arise when considering "slow" synaptic
plasticity rules where the characteristic time for synapse adaptation is quite
longer than the characteristic time for neurons dynamics.Comment: 39 pages, 3 figure
- …