625 research outputs found
Polymer Amide as an Early Topology
Hydrophobic polymer amide (HPA) could have been one of the first normal density materials to accrete in space. We present ab initio calculations of the energetics of amino acid polymerization via gas phase collisions. The initial hydrogen-bonded di-peptide is sufficiently stable to proceed in many cases via a transition state into a di-peptide with an associated bound water molecule of condensation. The energetics of polymerization are only favorable when the water remains bound. Further polymerization leads to a hydrophobic surface that is phase-separated from, but hydrogen bonded to, a small bulk water complex. The kinetics of the collision and subsequent polymerization are discussed for the low-density conditions of a molecular cloud. This polymer in the gas phase has the properties to make a topology, viz. hydrophobicity allowing phase separation from bulk water, capability to withstand large temperature ranges, versatility of form and charge separation. Its flexible tetrahedral carbon atoms that alternate with more rigid amide groups allow it to deform and reform in hazardous conditions and its density of hydrogen bonds provides adhesion that would support accretion to it of silicon and metal elements to form a stellar dust material
Polymer amide as a source of the cosmic 6.2 micron emission and absorption
Cosmic infrared emission and absorption spectra often carry a well-defined
and invariant 6.2 micron band that has been proposed to emanate from very small
dust grains that may carry polyaromatic hydrocarbons. Hemoglycin, a
well-defined polymer of glycine that also contains iron, has been found in
meteorites of the primordial CV3 class and therefore originated in the solar
protoplanetary disc. In approximate calculations, the principal amide I
infrared absorption band of hemoglycin is at 6.04 microns. Hemoglycin, an
antiparallel beta sheet structure with two 11-mer glycine chains, has an exact
structural analog in antiparallel poly-L-lysine beta sheets which in the
laboratory have an absorption peak at 6.21 microns. This wavelength
coincidence, the demonstrated propensity of hemoglycin 4.9nm rods to form
accreting lattice structures, and its proven existence in the solar
protoplanetary disc strongly suggest that the cosmic 6.2 micron emission and
absorption could be from small grains that are hemoglycin lattices or
shell-like vesicles carrying internal organic molecules of various types.
Calculated hemoglycin ultraviolet absorptions associated with iron in the
molecule match the observed ultraviolet extinction feature at nominal 2175
Angstroms.Comment: 8 pages, 4 figure
Oat-enriched diet reduces inflammatory status assessed by circulating cell-derived microparticle concentrations in type 2 diabetes
This work was funded by the Chief Scientists Office of the Scottish Government by a joint grant to the University of the Highland and Islands, Grampian Health Board, Biomathematics and Statistics Scotland and the Rowett Institute of Nutrition and Health, University of Aberdeen. Additional support was provided by Provexis plc.Peer reviewedPublisher PD
Comparison of Langevin and Markov channel noise models for neuronal signal generation
The stochastic opening and closing of voltage-gated ion channels produces
noise in neurons. The effect of this noise on the neuronal performance has been
modelled using either approximate or Langevin model, based on stochastic
differential equations or an exact model, based on a Markov process model of
channel gating. Yet whether the Langevin model accurately reproduces the
channel noise produced by the Markov model remains unclear. Here we present a
comparison between Langevin and Markov models of channel noise in neurons using
single compartment Hodgkin-Huxley models containing either and
, or only voltage-gated ion channels. The performance of the
Langevin and Markov models was quantified over a range of stimulus statistics,
membrane areas and channel numbers. We find that in comparison to the Markov
model, the Langevin model underestimates the noise contributed by voltage-gated
ion channels, overestimating information rates for both spiking and non-spiking
membranes. Even with increasing numbers of channels the difference between the
two models persists. This suggests that the Langevin model may not be suitable
for accurately simulating channel noise in neurons, even in simulations with
large numbers of ion channels
Food Intake and Dietary Glycaemic Index in Free-Living Adults with and without Type 2 Diabetes Mellitus
A recent Cochrane review concluded that low glycaemic index (GI) diets are beneficial in glycaemic control for patients with type 2 diabetes mellitus (T2DM). There are limited UK data regarding the dietary GI in free-living adults with and without T2DM. We measured the energy and macronutrient intake and the dietary GI in a group (n = 19) of individuals with diet controlled T2DM and a group (n = 19) without diabetes, matched for age, BMI and gender. Subjects completed a three-day weighed dietary record. Patients with T2DM consumed more daily portions of wholegrains (2.3 vs. 1.1, P = 0.003), more dietary fibre (32.1 vs. 20.9 g, P < 0.001) and had a lower diet GI (53.5 vs. 57.7, P = 0.009) than subjects without T2DM. Both groups had elevated fat and salt intake and low fruit and vegetable intake, relative to current UK recommendations. Conclusions: Patients with T2DM may already consume a lower GI diet than the general population but further efforts are needed to reduce dietary GI and achieve other nutrient targets
Basal tolerance but not plasticity gives invasive springtails the advantage in an assemblage setting
As global climates change, alien species are anticipated to have a growing advantage relative to their indigenous counterparts, mediated through consistent trait differences between the groups. These insights have largely been developed based on interspecific comparisons using multiple species examined from different locations. Whether such consistent physiological trait differences are present within assemblages is not well understood, especially for animals. Yet, it is at the assemblage level that interactions play out. Here, we examine whether physiological trait differences observed at the interspecific level are also applicable to assemblages. We focus on the Collembola, an important component of the soil fauna characterized by invasions globally, and five traits related to fitness: critical thermal maximum, minimum and range, desiccation resistance and egg development rate. We test the predictions that the alien component of a local assemblage has greater basal physiological tolerances or higher rates, and more pronounced phenotypic plasticity than the indigenous component. Basal critical thermal maximum, thermal tolerance range, desiccation resistance, optimum temperature for egg development, the rate of development at that optimum and the upper temperature limiting egg hatching success are all significantly higher, on average, for the alien than the indigenous components of the assemblage. Outcomes for critical thermal minimum are variable. No significant differences in phenotypic plasticity exist between the alien and indigenous components of the assemblage. These results are consistent with previous interspecific studies investigating basal thermal tolerance limits and development rates and their phenotypic plasticity, in arthropods, but are inconsistent with results from previous work on desiccation resistance. Thus, for the Collembola, the anticipated advantage of alien over indigenous species under warming and drying is likely to be manifest in local assemblages, globally
Garden varieties: how attractive are recommended garden plants to butterflies?
One way the public can engage in insect conservation is through wildlife gardening, including the growing of insect-friendly flowers as sources of nectar. However, plant varieties differ in the types of insects they attract. To determine which garden plants attracted which butterflies, we counted butterflies nectaring on 11 varieties of summer-flowering garden plants in a rural garden in East Sussex, UK. These plants were all from a list of 100 varieties considered attractive to British butterflies, and included the five varieties specifically listed by the UK charity Butterfly Conservation as best for summer nectar. A total of 2659 flower visits from 14 butterfly and one moth species were observed. We performed a principal components analysis which showed contrasting patterns between the species attracted to Origanum vulgare and Buddleia davidii. The “butterfly bush” Buddleia attracted many nymphalines, such as the peacock, Inachis io, but very few satyrines such as the gatekeeper, Pyronia tithonus, which mostly visited Origanum. Eupatorium cannibinum had the highest Simpson’s Diversity score of 0.75, while Buddleia and Origanum were lower, scoring 0.66 and 0.50 respectively. No one plant was good at attracting all observed butterfly species, as each attracted only a subset of the butterfly community. We conclude that to create a butterfly-friendly garden, a variety of plant species are required as nectar sources for butterflies. Furthermore, garden plant recommendations can probably benefit from being more precise as to the species of butterfly they attract
- …