3,809 research outputs found

    Miniature mobile sensor platforms for condition monitoring of structures

    Get PDF
    In this paper, a wireless, multisensor inspection system for nondestructive evaluation (NDE) of materials is described. The sensor configuration enables two inspection modes-magnetic (flux leakage and eddy current) and noncontact ultrasound. Each is designed to function in a complementary manner, maximizing the potential for detection of both surface and internal defects. Particular emphasis is placed on the generic architecture of a novel, intelligent sensor platform, and its positioning on the structure under test. The sensor units are capable of wireless communication with a remote host computer, which controls manipulation and data interpretation. Results are presented in the form of automatic scans with different NDE sensors in a series of experiments on thin plate structures. To highlight the advantage of utilizing multiple inspection modalities, data fusion approaches are employed to combine data collected by complementary sensor systems. Fusion of data is shown to demonstrate the potential for improved inspection reliability

    On the morphological deviation in additive manufacturing of porous Ti6Al4V scaffold: a design consideration

    Get PDF
    Additively manufactured Ti scaffolds have been used for bone replacement and orthopaedic applications. In these applications, both morphological and mechanical properties are important for their in vivo performance. Additively manufactured Ti6Al4V triply periodic minimal surface (TPMS) scaffolds with diamond and gyroid structures are known to have high stiffness and high osseointegration properties, respectively. However, morphological deviations between the as-designed and as-built types of these scaffolds have not been studied before. In this study, the morphological and mechanical properties of diamond and gyroid scaffolds at macro and microscales were examined. The results demonstrated that the mean printed strut thickness was greater than the designed target value. For diamond scaffolds, the deviation increased from 7.5 ÎŒm (2.5% excess) for vertical struts to 105.4 ÎŒm (35.1% excess) for horizontal struts. For the gyroid design, the corresponding deviations were larger, ranging from 12.6 ÎŒm (4.2% excess) to 198.6 ÎŒm (66.2% excess). The mean printed pore size was less than the designed target value. For diamonds, the deviation of the mean pore size from the designed value increased from 33.1 ÎŒm (-3.0% excess) for vertical struts to 92.8 ÎŒm (-8.4% excess) for horizontal struts. The corresponding deviation for gyroids was larger, ranging from 23.8 ÎŒm (-3.0% excess) to 168.7 ÎŒm (-21.1% excess). Compressive Young's modulus of the bulk sample, gyroid and diamond scaffolds was calculated to be 35.8 GPa, 6.81 GPa and 7.59 GPa, respectively, via the global compression method. The corresponding yield strength of the samples was measured to be 1012, 108 and 134 MPa. Average microhardness and Young's modulus from α and ÎČ phases of Ti6Al4V from scaffold struts were calculated to be 4.1 GPa and 131 GPa, respectively. The extracted morphology and mechanical properties in this study could help understand the deviation between the as-design and as-built matrices, which could help develop a design compensation strategy before the fabrication of the scaffolds

    Cell type-specific characterization of nuclear DNA contents within complex tissues and organs

    Get PDF
    BACKGROUND: Eukaryotic organisms are defined by the presence of a nucleus, which encloses the chromosomal DNA, and is characterized by its DNA content (C-value). Complex eukaryotic organisms contain organs and tissues that comprise interspersions of different cell types, within which polysomaty, endoreduplication, and cell cycle arrest is frequently observed. Little is known about the distribution of C-values across different cell types within these organs and tissues. RESULTS: We have developed, and describe here, a method to precisely define the C-value status within any specific cell type within complex organs and tissues of plants. We illustrate the application of this method to Arabidopsis thaliana, specifically focusing on the different cell types found within the root. CONCLUSION: The method accurately and conveniently charts C-value within specific cell types, and provides novel insight into developmental processes. The method is, in principle, applicable to any transformable organism, including mammals, within which cell type specificity of regulation of endoreduplication, of polysomaty, and of cell cycle arrest is suspected

    Comparison of the contributions of the nuclear and cytoplasmic compartments to global gene expression in human cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the most general sense, studies involving global analysis of gene expression aim to provide a comprehensive catalog of the components involved in the production of recognizable cellular phenotypes. These studies are often limited by the available technologies. One technology, based on microarrays, categorizes gene expression in terms of the abundance of RNA transcripts, and typically employs RNA prepared from whole cells, where cytoplasmic RNA predominates.</p> <p>Results</p> <p>Using microarrays comprising oligonucleotide probes that represent either protein-coding transcripts or microRNAs (miRNA), we have studied global transcript accumulation patterns for the HepG2 (human hepatoma) cell line. Through subdividing the total pool of RNA transcripts into samples from nuclei, the cytoplasm, and whole cells, we determined the degree of correlation of these patterns across these different subcellular locations. The transcript and miRNA abundance patterns for the three RNA fractions were largely similar, but with some exceptions: nuclear RNA samples were enriched with respect to the cytoplasm in transcripts encoding proteins associated with specific nuclear functions, such as the cell cycle, mitosis, and transcription. The cytoplasmic RNA fraction also was enriched, when compared to the nucleus, in transcripts for proteins related to specific nuclear functions, including the cell cycle, DNA replication, and DNA repair. Some transcripts related to the ubiquitin cycle, and transcripts for various membrane proteins were sorted into either the nuclear or cytoplasmic fractions.</p> <p>Conclusion</p> <p>Enrichment or compartmentalization of cell cycle and ubiquitin cycle transcripts within the nucleus may be related to the regulation of their expression, by preventing their translation to proteins. In this way, these cellular functions may be tightly controlled by regulating the release of mRNA from the nucleus and thereby the expression of key rate limiting steps in these pathways. Many miRNA precursors were also enriched in the nuclear samples, with significantly fewer being enriched in the cytoplasm. Studies of mRNA localization will help to clarify the roles RNA processing and transport play in the regulation of cellular function.</p

    Taxonomic voucher specimens for study of post-wildfire forest habitat in Douglas County, Oregon

    Get PDF
    this publication provides data about voucher specimens deposited in the museum in conjunction with a research project on pollinators

    Control of rotorcraft retreating blade stall using air-jet vortex generators

    Get PDF
    A series of low-speed wind tunnel tests were carried out on an oscillating airfoil fitted with two rows of air-jet vortex generators (AJVGs). The airfoil used had an RAE 9645 section and the two spanwise arrays of AJVGs were located at x/c=0.12 and 0.62. The devices and their distribution were chosen to assess their ability to modify/control dynamic stall; the goal being to enhance the aerodynamic performance of helicopter rotors on the retreating blade side of the disc. The model was pitched about the quarter chord with a reduced frequency (k) of 0.1 in a sinusoidal motion defined by a=15o+10sin_ t. The measured data indicate that, for continuous blowing from the front row of AJVGs with a momentum blowing coefficient (C &#956;) greater than 0.008, modifications to the stalling process are encouraging. In particular, the pitching moment behavior exhibits delayed stall and there is a marked reduction in the normal force hysteresis

    Taxonomic voucher specimens for study of bee communities in intensively managed Douglas-fir forests in the Oregon Coast Range

    Get PDF
    Understanding how pollinators respond to anthropogenic land use is key to conservation of biodiversity and ecosystem services, but few studies have addressed this topic in coniferous forests, particularly those managed intensively for wood production. This study reports on voucher material generated as part of Zitomer et al. (2023), that assessed changes in wild bee communities with time since harvest in 60 intensively managed Douglas-fir (Pseudotsuga menziesii) stands in the Oregon Coast Range across a gradient in stand age spanning a typical harvest rotation (0-37 years post-harvest). We additionally assessed relationships of bee diversity and community composition to relevant habitat features, including availability of floral resources and nest sites, understory vegetation characteristics, and composition of the surrounding landscape. Specimens were collected using a combination of passive sampling methods-blue vane traps and white, blue, and yellow bowl traps- and hand-netting and were identified to the lowest possible taxonomic level by A.R. Moldenke and L.R. Best. Four hundred and ten taxonomic voucher specimens were deposited into the Oregon State Arthropod Collection (Accession# OSAC_AC_2023_01_09-001-01) to serve as a reference for future research
    • 

    corecore