101 research outputs found

    Methylation of hMLH1 promoter correlates with the gene silencing with a region-specific manner in colorectal cancer

    Get PDF
    Microsatellite instability is present in over 80% of the hereditary non-polyposis colorectal carcinoma and about 15–20% of the sporadic cancer. Microsatellite instability is caused by the inactivation of the mismatch repair genes, such as primarily hMLH1, hMSH2. To study the mechanisms of the inactivation of mismatch repair genes in colorectal cancers, especially the region-specific methylation of hMLH1 promoter and its correlation with gene expression, we analysed microsatellite instability, expression and methylation of hMLH1 and loss of heterozygosity at hMLH1 locus in these samples. Microsatellite instability was present in 17 of 71 primary tumours of colorectal cancer, including 14 of 39 (36%) mucinous cancer and three of 32 (9%) non-mucinous cancer. Loss of hMLH1 and hMSH2 expression was detected in nine and three of 16 microsatellite instability tumours respectively. Methylation at CpG sites in a proximal region of hMLH1 promoter was detected in seven of nine tumours that showed no hMLH1 expression, while no methylation was present in normal mucosa and tumours which express hMLH1. However, methylation in the distal region was observed in all tissues including normal mucosa and hMLH1 expressing tumours. This observation indicates that methylation of hMLH1 promoter plays an important role in microsatellite instability with a region-specific manner in colorectal cancer. Loss of heterozygosity at hMLH1 locus was present in four of 17 cell lines and 16 of 54 tumours with normal hMLH1 status, while loss of heterozygosity was absent in all nine cell lines and nine tumours with abnormal hMLH1 status (mutation or loss of expression), showing loss of heterozygosity is not frequently involved in the inactivation of hMLH1 gene in sporadic colorectal cancer

    Aspirin-induced nuclear translocation of NFκB and apoptosis in colorectal cancer is independent of p53 status and DNA mismatch repair proficiency

    Get PDF
    Substantial evidence indicates nonsteroidal anti-inflammatory drugs (NSAIDs) protect against colorectal cancer (CRC). However, the molecular basis for this anti-tumour activity has not been fully elucidated. We previously reported that aspirin induces signal-specific IκBα degradation followed by NFκB nuclear translocation in CRC cells, and that this mechanism contributes substantially to aspirin-induced apoptosis. We have also reported the relative specificity of this aspirin-induced NFκB-dependent apoptotic effect for CRC cells, in comparison to other cancer cell types. It is now important to establish whether there is heterogeneity within CRC, with respect to the effects of aspirin on the NFκB pathway and apoptosis. p53 signalling and DNA mismatch repair (MMR) are known to be deranged in CRC and have been reported as potential molecular targets for the anti-tumour activity of NSAIDs. Furthermore, both p53 and MMR dysfunction have been shown to confer resistance to chemotherapeutic agents. Here, we set out to determine the p53 and hMLH1 dependency of the effects of aspirin on NFκB signalling and apoptosis in CRC. We specifically compared the effects of aspirin treatment on cell viability, apoptosis and NFκB signalling in an HCT-116 CRC cell line with the p53 gene homozygously disrupted (HCT-116p53−/−) and an HCT-116 cell line rendered MMR proficient by chromosomal transfer (HCT-116+ch3), to the parental HCT-116 CRC cell line. We found that aspirin treatment induced apoptosis following IκBα degradation, NFκB nuclear translocation and repression of NFκB-driven transcription, irrespective of p53 and DNA MMR status. These findings are relevant for design of both novel chemopreventative agents and chemoprevention trials in CRC

    Activity and regulation by growth factors of calmodulin-dependent protein kinase III (elongation factor 2-kinase) in human breast cancer

    Get PDF
    Calmodulin-dependent protein kinase III (CaM kinase III, elongation factor-2 kinase) is a unique member of the Ca2+/CaM-dependent protein kinase family. Activation of CaM kinase III leads to the selective phosphorylation of elongation factor 2 (eEF-2) and transient inhibition of protein synthesis. Recent cloning and sequencing of CaM kinase III revealed that this enzyme represents a new superfamily of protein kinases. The activity of CaM kinase III is selectively activated in proliferating cells; inhibition of the kinase blocked cells in G0/G1-S and decreased viability. To determine the significance of CaM kinase III in breast cancer, we measured the activity of the kinase in human breast cancer cell lines as well as in fresh surgical specimens. The specific activity of CaM kinase III in human breast cancer cell lines was equal to or greater than that seen in a variety of cell lines with similar rates of proliferation. The specific activity of CaM kinase III was markedly increased in human breast tumour specimens compared with that of normal adjacent breast tissue. The activity of this enzyme was regulated by breast cancer mitogens. In serum-deprived MDA-MB-231 cells, the combination of insulin-like growth factor I (IGF-I) and epidermal growth factor (EGF) stimulated cell proliferation and activated CaM kinase III to activities observed in the presence of 10% serum. Inhibition of enzyme activity blocked cell proliferation induced by growth factors. In MCF-7 cells separated by fluorescence-activated cell sorting, CaM kinase III was increased in S-phase over that of other phases of the cell cycle. In summary, the activity of Ca2+/CaM-dependent protein kinase III is controlled by breast cancer mitogens and appears to be constitutively activated in human breast cancer. These results suggest that CaM kinase III may contribute an important link between growth factor/receptor interactions, protein synthesis and the induction of cellular proliferation in human breast cancer. © 1999 Cancer Research Campaig

    Mutation Rates of TGFBR2 and ACVR2 Coding Microsatellites in Human Cells with Defective DNA Mismatch Repair

    Get PDF
    Microsatellite instability promotes colonic tumorigenesis through generating frameshift mutations at coding microsatellites of tumor suppressor genes, such as TGFBR2 and ACVR2. As a consequence, signaling through these TGFβ family receptors is abrogated in DNA Mismatch repair (MMR)-deficient tumors. How these mutations occur in real time and mutational rates of these human coding sequences have not previously been studied. We utilized cell lines with different MMR deficiencies (hMLH1−/−, hMSH6−/−, hMSH3−/−, and MMR-proficient) to determine mutation rates. Plasmids were constructed in which exon 3 of TGFBR2 and exon 10 of ACVR2 were cloned +1 bp out of frame, immediately after the translation initiation codon of an enhanced GFP (EGFP) gene, allowing a −1 bp frameshift mutation to drive EGFP expression. Mutation-resistant plasmids were constructed by interrupting the coding microsatellite sequences, preventing frameshift mutation. Stable cell lines were established containing portions of TGFBR2 and ACVR2, and nonfluorescent cells were sorted, cultured for 7–35 days, and harvested for flow cytometric mutation detection and DNA sequencing at specific time points. DNA sequencing revealed a −1 bp frameshift mutation (A9 in TGFBR2 and A7 in ACVR2) in the fluorescent cells. Two distinct fluorescent populations, M1 (dim, representing heteroduplexes) and M2 (bright, representing full mutants) were identified, with the M2 fraction accumulating over time. hMLH1 deficiency revealed 11 (5.91×10−4) and 15 (2.18×10−4) times higher mutation rates for the TGFBR2 and ACVR2 microsatellites compared to hMSH6 deficiency, respectively. The mutation rate of the TGFBR2 microsatellite was ∼3 times higher in both hMLH1 and hMSH6 deficiencies than the ACVR2 microsatellite. The −1 bp frameshift mutation rates of TGFBR2 and ACVR2 microsatellite sequences are dependent upon the human MMR background

    MethylViewer: computational analysis and editing for bisulfite sequencing and methyltransferase accessibility protocol for individual templates (MAPit) projects

    Get PDF
    Bisulfite sequencing is a widely-used technique for examining cytosine DNA methylation at nucleotide resolution along single DNA strands. Probing with cytosine DNA methyltransferases followed by bisulfite sequencing (MAPit) is an effective technique for mapping protein–DNA interactions. Here, MAPit methylation footprinting with M.CviPI, a GC methyltransferase we previously cloned and characterized, was used to probe hMLH1 chromatin in HCT116 and RKO colorectal cancer cells. Because M.CviPI-probed samples contain both CG and GC methylation, we developed a versatile, visually-intuitive program, called MethylViewer, for evaluating the bisulfite sequencing results. Uniquely, MethylViewer can simultaneously query cytosine methylation status in bisulfite-converted sequences at as many as four different user-defined motifs, e.g. CG, GC, etc., including motifs with degenerate bases. Data can also be exported for statistical analysis and as publication-quality images. Analysis of hMLH1 MAPit data with MethylViewer showed that endogenous CG methylation and accessible GC sites were both mapped on single molecules at high resolution. Disruption of positioned nucleosomes on single molecules of the PHO5 promoter was detected in budding yeast using M.CviPII, increasing the number of enzymes available for probing protein–DNA interactions. MethylViewer provides an integrated solution for primer design and rapid, accurate and detailed analysis of bisulfite sequencing or MAPit datasets from virtually any biological or biochemical system

    Obesity and colorectal cancer: molecular features of adipose tissue

    Full text link

    Driver mutations of cancer epigenomes

    Get PDF
    corecore