160 research outputs found
Protein-Protein Interaction Inhibitors Targeting the Eph-Ephrin System with a Focus on Amino Acid Conjugates of Bile Acids
The role of the Eph-ephrin system in the etiology of pathological conditions has been consolidated throughout the years. In this context, approaches directed against this signaling system, intended to modulate its activity, can be strategic therapeutic opportunities. Currently, the most promising class of compounds able to interfere with the Eph receptor-ephrin protein interaction is composed of synthetic derivatives of bile acids. In the present review, we summarize the progresses achieved, in terms of chemical expansions and structure-activity relationships, both in the steroidal core and the terminal carboxylic acid group, along with the pharmacological characterization for the most promising Eph-ephrin antagonists in in vivo settings
A photosensitizing fusion protein with targeting capabilities
The photodynamic treatment for antimicrobial applications or anticancer therapy relies on reactive oxygen species generated by photosensitizing molecules after absorption of visible or near-infrared light. If the photosensitizing molecule is in close vicinity of the microorganism or the malignant cell, a photocytotoxic action is exerted. Therefore, the effectiveness of photosensitizing compounds strongly depends on their capability to target microbial or cancer-specific proteins. In this study, we report on the preparation and preliminary characterization of human recombinant myoglobin fused to the vasoactive intestinal peptide to target vasoactive intestinal peptide receptor (VPAC) receptors. Fe-protoporphyrin IX was replaced by the photosensitizing compound Zn-protoporphyrin IX. Taking advantage of the fluorescence emission by Zn-protoporphyrin IX, we show that the construct can bind prostate cancer cells where the VPAC receptors are expressed
UniPR1331: small Eph/ephrin antagonist beneficial in intestinal inflammation by interfering with type-B signaling
Eph receptors, comprising A and B classes, interact with cell-bound ephrins generating bidirectional signaling. Although mainly related to carcinogenesis and organogenesis, the role of Eph/ephrin system in inflammation is growingly acknowledged. Recently, we showed that EphA/ephrin-A proteins can modulate the acute inflammatory responses induced by mesenteric ischemia/reperfusion, while beneficial effects were granted by EphB4, acting as EphB/ephrin-B antagonist, in a murine model of Crohn’s disease (CD). Accordingly, we now aim to evaluate the effects of UniPR1331, a pan-Eph/ephrin antagonist, in TNBS-induced colitis and to ascertain whether UniPR1331 effects can be attributed to A- or B-type signaling interference. The potential anti-inflammatory action of UniPR1331 was compared to those of the recombinant proteins EphA2, a purported EphA/ephrin-A antagonist, and of ephrin-A1-Fc and EphA2-Fc, supposedly activating forward and reverse EphA/ephrin-A signaling, in murine TNBS-induced colitis and in stimulated cultured mononuclear splenocytes. UniPR1331 antagonized the inflammatory responses both in vivo, mimicking EphB4 protection, and in vitro; EphA/ephrin-A proteins were inactive or only weakly effective. Our findings represent a further proof-of-concept that blockade of EphB/ephrin-B signaling is a promising pharmacological strategy for CD management and highlight UniPR1331 as a novel drug candidate, seemingly working through the modulation of immune responses
Analysis of adam12-mediated ephrin-a1 cleavage and its biological functions
Accumulating evidence indicates that an elevated ephrin-A1 expression is positively correlated with a worse prognosis in some cancers such as colon and liver cancer. The detailed mechanism of an elevated ephrin-A1 expression in a worse prognosis still remains to be fully elucidated. We previously reported that ADAM12-cleaved ephrin-A1 enhanced lung vascular permeability and thereby induced lung metastasis. However, it is still unclear whether or not cleaved forms of ephrin-A1 are derived from primary tumors and have biological activities. We identified the ADAM12-mediated cleavage site of ephrin-A1 by a Matrix-assisted laser desorption ionization mass spectrometry and checked levels of ephrin-A1 in the serum and the urine derived from the primary tumors by using a mouse model. We found elevated levels of tumor-derived ephrin-A1 in the serum and the urine in the tumor-bearing mice. Moreover, inhibition of ADAM-mediated cleavage of ephrin-A1 or antagonization of the EphA receptors resulted in a significant reduction of lung metastasis. The results suggest that tumor-derived ephrin-A1 is not only a potential biomarker to predict lung metastasis from the primary tumor highly expressing ephrin-A1 but also a therapeutic target of lung metastasis
Protective effects of solvent fractions of Mentha spicata (L.) leaves evaluated on 4-nitroquinoline-1-oxide induced chromosome damage and apoptosis in mouse bone marrow cells
Spearmint leaves (Mentha spicata L.) contain high levels of antioxidants that are known to protect against both exogenous and endogenous DNA damage. In this study, the protective effects of the hexane fraction (HF), chloroform fraction (CF) and ethyl acetate fraction (EAF) in an ethanol extract from M. spicata were evaluated against 4-nitroquinoline-1-oxide (4-NQO) induced chromosome damage and apoptosis in bone marrow cells of Swiss albino mice. Two (EAF; 80 and 160 mg/ kg body weight - bw) or three (HF and CF; 80, 160 and 320 mg/ kg bw) doses of solvent fractions or vehicle control (25% DMSO in water) were administered orally for five consecutive days. Upon the sixth day, 4-NQO was injected intraperitoneally. The animals were killed the following day. Other control groups were comprised of animals treated with either the vehicle control or the various doses of solvent fractions, but with no 4-NQO treatment. 4-NQO induced micro-nucleated polychromatic erythrocytes (MnPCEs) in all the test groups. However, pre-treatment of animals with the solvent fractions significantly reduced the 4-NQO-induced MnPCEs as well as the percentage of apoptotic cells. The reduction of both MnPCE and apoptosis was more evident following the pre-treatment of animals with 160 mg/kg bw EAF
Lithocholic Acid Is an Eph-ephrin Ligand Interfering with Eph-kinase Activation
Eph-ephrin system plays a central role in a large variety of human cancers. In
fact, alterated expression and/or de-regulated function of Eph-ephrin system
promotes tumorigenesis and development of a more aggressive and metastatic
tumour phenotype. In particular EphA2 upregulation is correlated with tumour
stage and progression and the expression of EphA2 in non-trasformed cells
induces malignant transformation and confers tumorigenic potential. Based on
these evidences our aim was to identify small molecules able to modulate
EphA2-ephrinA1 activity through an ELISA-based binding screening. We identified
lithocholic acid (LCA) as a competitive and reversible ligand inhibiting
EphA2-ephrinA1 interaction (Ki = 49 µM). Since each
ephrin binds many Eph receptors, also LCA does not discriminate between
different Eph-ephrin binding suggesting an interaction with a highly conserved
region of Eph receptor family. Structurally related bile acids neither inhibited
Eph-ephrin binding nor affected Eph phosphorylation. Conversely, LCA inhibited
EphA2 phosphorylation induced by ephrinA1-Fc in PC3 and HT29 human prostate and
colon adenocarcinoma cell lines (IC50 = 48 and
66 µM, respectively) without affecting cell viability or other receptor
tyrosine-kinase (EGFR, VEGFR, IGFR1β, IRKβ) activity. LCA did not
inhibit the enzymatic kinase activity of EphA2 at 100 µM (LANCE method)
confirming to target the Eph-ephrin protein-protein interaction. Finally, LCA
inhibited cell rounding and retraction induced by EphA2 activation in PC3 cells.
In conclusion, our findings identified a hit compound useful for the development
of molecules targeting ephrin system. Moreover, as ephrin signalling is a key
player in the intestinal cell renewal, our work could provide an interesting
starting point for further investigations about the role of LCA in the
intestinal homeostasis
- …