1,380 research outputs found
Coupled multimode optomechanics in the microwave regime
The motion of micro- and nanomechanical resonators can be coupled to
electromagnetic fields. This allows to explore the mutual interaction and
introduces new means to manipulate and control both light and mechanical
motion. Such optomechanical systems have recently been implemented in
nanoelectromechanical systems involving a nanomechanical beam coupled to a
superconducting microwave resonator. Here, we propose optomechanical systems
that involve multiple, coupled microwave resonators. In contrast to similar
systems in the optical realm, the coupling frequency governing photon exchange
between microwave modes is naturally comparable to typical mechanical
frequencies. For instance this enables new ways to manipulate the microwave
field, such as mechanically driving coherent photon dynamics between different
modes. In particular we investigate two setups where the electromagnetic field
is coupled either linearly or quadratically to the displacement of a
nanomechanical beam. The latter scheme allows to perform QND Fock state
detection. For experimentally realistic parameters we predict the possibility
to measure an individual quantum jump from the mechanical ground state to the
first excited state.Comment: 6 pages, 4 figures, 1 tabl
Molecular basis for modulation of the p53 target selectivity by KLF4
The tumour suppressor p53 controls transcription of various genes involved in apoptosis, cell-cycle arrest, DNA repair and metabolism. However, its DNA-recognition specificity is not nearly sufficient to explain binding to specific locations in vivo. Here, we present evidence that KLF4 increases the DNA-binding affinity of p53 through the formation of a loosely arranged ternary complex on DNA. This effect depends on the distance between the response elements of KLF4 and p53. Using nuclear magnetic resonance and fluorescence techniques, we found that the amino-terminal domain of p53 interacts with the KLF4 zinc fingers and mapped the interaction site. The strength of this interaction was increased by phosphorylation of the p53 N-terminus, particularly on residues associated with regulation of cell-cycle arrest genes. Taken together, the cooperative binding of KLF4 and p53 to DNA exemplifies a regulatory mechanism that contributes to p53 target selectivity
What was the impact of dairy goats distributed by the Crop-Goat project in Tanzania?
In Tanzania most goat production is extensive and aimed at selling live animals with limited direct impact on food security and nutrition. The Crop and Goat Project (CGP), implemented in Kongwa and Mvomero districts, aimed at improving income, food security and nutrition of poor households by promoting dairy goat production integrated with cassava and sweet potatoes. Within the project area, village leaders generated a list of 70 potential goat recipients in each of the 4 intervention villages, based on resources and capacity. Out of these, 108 households received a total of 229 dairy goats over the project period. The objective of this study is to evaluate the impacts of introducing dairy goats on income, assets and food consumption. A baseline survey at project initiation was conducted among 552 households in 2012, including all households which later received goats. Out of these, 373 households were interviewed a second time in 2014. This sample includes 98 of the beneficiary households, 102 potential beneficiary households, not having received a project goat, and 120 non-potential households in project villages. Analysis of the baseline data revealed that beneficiary households were different to potential and non-potential households in terms of non-livestock assets and food consumption. Therefore, the study applies a difference-in-differences (DD) approach in combination with propensity score matching to overcome the observed bias for estimating the impact of the project intervention. Results from the econometric analysis show the interventions had no significant effect on livestock or total income. Unsurprisingly, the project does appear to have significantly increased household ownership of small ruminants and total livestock. We also find a significant increase in the food consumption score of the survey respondent in project households, but no significant effect on the consumption score of the index child. Finally, we see a significant increase in the respondent's frequency of consuming dairy products, though none for the index child. Results suggest that dairy goats in this context have a stronger impact on household nutrition than on income although a better understanding of intra-household food allocation is required to support child nutrition
Effective dynamics for particles coupled to a quantized scalar field
We consider a system of N non-relativistic spinless quantum particles
(``electrons'') interacting with a quantized scalar Bose field (whose
excitations we call ``photons''). We examine the case when the velocity v of
the electrons is small with respect to the one of the photons, denoted by c
(v/c= epsilon << 1). We show that dressed particle states exist (particles
surrounded by ``virtual photons''), which, up to terms of order (v/c)^3, follow
Hamiltonian dynamics. The effective N-particle Hamiltonian contains the kinetic
energies of the particles and Coulomb-like pair potentials at order (v/c)^0 and
the velocity dependent Darwin interaction and a mass renormalization at order
(v/c)^{2}. Beyond that order the effective dynamics are expected to be
dissipative.
The main mathematical tool we use is adiabatic perturbation theory. However,
in the present case there is no eigenvalue which is separated by a gap from the
rest of the spectrum, but its role is taken by the bottom of the absolutely
continuous spectrum, which is not an eigenvalue.
Nevertheless we construct approximate dressed electrons subspaces, which are
adiabatically invariant for the dynamics up to order (v/c)\sqrt{\ln
(v/c)^{-1}}. We also give an explicit expression for the non adiabatic
transitions corresponding to emission of free photons. For the radiated energy
we obtain the quantum analogue of the Larmor formula of classical
electrodynamics.Comment: 67 pages, 2 figures, version accepted for publication in
Communications in Mathematical Physic
Appearance of Gauge Fields and Forces beyond the adiabatic approximation
We investigate the origin of quantum geometric phases, gauge fields and
forces beyond the adiabatic regime. In particular, we extend the notions of
geometric magnetic and electric forces discovered in studies of the
Born-Oppenheimer approximation to arbitrary quantum systems described by matrix
valued quantum Hamiltonians. The results are illustrated by several physical
relevant examples
Prospects for cooling nanomechanical motion by coupling to a superconducting microwave resonator
Recent theoretical work has shown that radiation pressure effects can in
principle cool a mechanical degree of freedom to its ground state. In this
paper, we apply this theory to our realization of an opto-mechanical system in
which the motion of mechanical oscillator modulates the resonance frequency of
a superconducting microwave circuit. We present experimental data demonstrating
the large mechanical quality factors possible with metallic, nanomechanical
beams at 20 mK. Further measurements also show damping and cooling effects on
the mechanical oscillator due to the microwave radiation field. These data
motivate the prospects for employing this dynamical backaction technique to
cool a mechanical mode entirely to its quantum ground state.Comment: 6 pages, 6 figure
Variable typing: Assigning meaning to variables in mathematical text
Information about the meaning of mathematical variables in text is useful in NLP/IR tasks such as symbol disambiguation, topic modeling and mathematical information retrieval (MIR). We introduce variable typing, the task of assigning one mathematical type (multi-word technical terms referring to mathematical concepts) to each variable in a sentence of mathematical text. As part of this work, we also introduce a new annotated data set composed of 33,524 data points extracted from scientific documents published on arXiv. Our intrinsic evaluation demonstrates that our data set is sufficient to successfully train and evaluate current classifiers from three different model architectures. The best performing model is evaluated on an extrinsic task: MIR, by producing a typed formula index. Our results show that the best performing MIR models make use of our typed index, compared to a formula index only containing raw symbols, thereby demonstrating the usefulness of variable typing
High Fidelity Adiabatic Quantum Computation via Dynamical Decoupling
We introduce high-order dynamical decoupling strategies for open system
adiabatic quantum computation. Our numerical results demonstrate that a
judicious choice of high-order dynamical decoupling method, in conjunction with
an encoding which allows computation to proceed alongside decoupling, can
dramatically enhance the fidelity of adiabatic quantum computation in spite of
decoherence.Comment: 5 pages, 4 figure
- …