17,954 research outputs found

    Gluino zero-modes for non-trivial holonomy calorons

    Get PDF
    We couple fermion fields in the adjoint representation (gluinos) to the SU(2) gauge field of unit charge calorons defined on R^3 x S_1. We compute corresponding zero-modes of the Dirac equation. These are relevant in semiclassical studies of N=1 Super-symmetric Yang-Mills theory. Our formulas, show that, up to a term proportional to the vector potential, the modes can be constructed by different linear combinations of two contributions adding up to the total caloron field strength.Comment: 17 pages, 3 Postscript figures, late

    Undecidability of the Spectral Gap

    Get PDF
    We construct families of translationally-invariant, nearest-neighbour Hamiltonians on a 2D square lattice of d-level quantum systems (d constant), for which determining whether the system is gapped or gapless is an undecidable problem. This is true even with the promise that each Hamiltonian is either gapped or gapless in the strongest sense: it is promised to either have continuous spectrum above the ground state in the thermodynamic limit, or its spectral gap is lower-bounded by a constant. Moreover, this constant can be taken equal to the operator norm of the local operator that generates the Hamiltonian (the local interaction strength). The result still holds true if one restricts to arbitrarily small quantum perturbations of classical Hamiltonians. The proof combines a robustness analysis of Robinson’s aperiodic tiling, together with tools from quantum information theory: the quantum phase estimation algorithm and the history state technique mapping Quantum Turing Machines to Hamiltonians

    Improved superposition schemes for approximate multi-caloron configurations

    Full text link
    Two improved superposition schemes for the construction of approximate multi-caloron-anticaloron configurations, using exact single (anti)caloron gauge fields as underlying building blocks, are introduced in this paper. The first improvement deals with possible monopole-Dirac string interactions between different calorons with non-trivial holonomy. The second one, based on the ADHM formalism, improves the (anti-)selfduality in the case of small caloron separations. It conforms with Shuryak's well-known ratio-ansatz when applied to instantons. Both superposition techniques provide a higher degree of (anti-)selfduality than the widely used sum-ansatz, which simply adds the (anti)caloron vector potentials in an appropriate gauge. Furthermore, the improved configurations (when discretized onto a lattice) are characterized by a higher stability when they are exposed to lattice cooling techniques.Comment: New version accepted for publication in Nucl. Phys. B. Text partly shortened, changes in the introduction, new results added on the comparison with exact solution

    Numerical study of Yang-Mills classical solutions on the twisted torus

    Full text link
    We use the lattice cooling method to investigate the structure of some gauge fixed SU(2) Yang-Mills classical solutions of the euclidean equations of motion which are defined in the 3-torus with symmetric twisted boundary conditions.Comment: 20pp (fig.included

    Fundamental limitations in the purifications of tensor networks

    Get PDF
    We show a fundamental limitation in the description of quantum many-body mixed states with tensor networks in purification form. Namely, we show that there exist mixed states which can be represented as a translationally invariant (TI) matrix product density operator (MPDO) valid for all system sizes, but for which there does not exist a TI purification valid for all system sizes. The proof is based on an undecidable problem and on the uniqueness of canonical forms of matrix product states. The result also holds for classical states.Comment: v1: 11 pages, 1 figure. v2: very minor changes. About to appear in Journal of Mathematical Physic

    Assessing non-Markovian dynamics

    Full text link
    We investigate what a snapshot of a quantum evolution - a quantum channel reflecting open system dynamics - reveals about the underlying continuous time evolution. Remarkably, from such a snapshot, and without imposing additional assumptions, it can be decided whether or not a channel is consistent with a time (in)dependent Markovian evolution, for which we provide computable necessary and sufficient criteria. Based on these, a computable measure of `Markovianity' is introduced. We discuss how the consistency with Markovian dynamics can be checked in quantum process tomography. The results also clarify the geometry of the set of quantum channels with respect to being solutions of time (in)dependent master equations.Comment: 5 pages, RevTex, 2 figures. (Except from typesetting) version to be published in the Physical Review Letter

    An Elemental Assay of Very, Extremely, and Ultra Metal-Poor Stars

    Get PDF
    We present a high-resolution elemental-abundance analysis for a sample of 23 very metal-poor (VMP; [Fe/H] < -2.0) stars, 12 of which are extremely metal-poor (EMP; [Fe/H] < -3.0), and 4 of which are ultra metal-poor (UMP; [Fe/H] < -4.0). These stars were targeted to explore differences in the abundance ratios for elements that constrain the possible astrophysical sites of element production, including Li, C, N, O, the alpha-elements, the iron-peak elements, and a number of neutron-capture elements. This sample substantially increases the number of known carbon-enhanced metal-poor (CEMP) and nitrogen-enhanced metal-poor (NEMP) stars -- our program stars include eight that are considered "normal" metal-poor stars, six CEMP-no stars, five CEMP-s stars, two CEMP-r stars, and two CEMP-r/s stars. One of the CEMP-rr stars and one of the CEMP-r/s stars are possible NEMP stars. We detect lithium for three of the six CEMP-no stars, all of which are Li-depleted with respect to the Spite plateau. The majority of the CEMP stars have [C/N] > 0. The stars with [C/N] < 0 suggest a larger degree of mixing; the few CEMP-no stars that exhibit this signature are only found at [Fe/H] < -3.4, a metallicity below which we also find the CEMP-no stars with large enhancements in Na, Mg, and Al. We confirm the existence of two plateaus in the absolute carbon abundances of CEMP stars, as suggested by Spite et al. We also present evidence for a "floor" in the absolute Ba abundances of CEMP-no stars at A(Ba)~ -2.0.Comment: 20 pages, 16 figures, Accepted for publication in Ap

    Complete Characterization of the Ground Space Structure of Two-Body Frustration-Free Hamiltonians for Qubits

    Full text link
    The problem of finding the ground state of a frustration-free Hamiltonian carrying only two-body interactions between qubits is known to be solvable in polynomial time. It is also shown recently that, for any such Hamiltonian, there is always a ground state that is a product of single- or two-qubit states. However, it remains unclear whether the whole ground space is of any succinct structure. Here, we give a complete characterization of the ground space of any two-body frustration-free Hamiltonian of qubits. Namely, it is a span of tree tensor network states of the same tree structure. This characterization allows us to show that the problem of determining the ground state degeneracy is as hard as, but no harder than, its classical analog.Comment: 5pages, 3 figure
    corecore