85 research outputs found

    The inv dup (15) or idic (15) syndrome (Tetrasomy 15q)

    Get PDF
    The inv dup(15) or idic(15) syndrome displays distinctive clinical findings represented by early central hypotonia, developmental delay and intellectual disability, epilepsy, and autistic behaviour. Incidence at birth is estimated at 1 in 30,000 with a sex ratio of almost 1:1. Developmental delay and intellectual disability affect all individuals with inv dup(15) and are usually moderate to profound. Expressive language is absent or very poor and often echolalic. Comprehension is very limited and contextual. Intention to communicate is absent or very limited. The distinct behavioral disorder shown by children and adolescents has been widely described as autistic or autistic-like. Epilepsy with a wide variety of seizure types can occur in these individuals, with onset between 6 months and 9 years. Various EEG abnormalities have been described. Muscle hypotonia is observed in almost all individuals, associated, in most of them, with joint hyperextensibility and drooling. Facial dysmorphic features are absent or subtle, and major malformations are rare. Feeding difficulties are reported in the newborn period

    Analysis of plant mitochondrial function using fluorescent protein sensors

    No full text
    Mitochondrial physiology sets the basis for function of the organelle and vice versa. While a limited range of in vivo parameters, such as oxygen consumption, has been classically accessible for measurement, a growing collection of fluorescent protein sensors can now give insights into the physiology of plant mitochondria. Nevertheless, the meaningful application of these sensors in mitochondria is technically challenging and requires rigorous experimental standards. Here we exemplify the application of three genetically encoded sensors to monitor glutathione redox potential, pH, and calcium in the matrix of mitochondria in intact plants. We describe current methods for quantitative imaging and analysis in living root tips by confocal microscopy and discuss methodological limitations

    Evidence that therapy works in clinically representative conditions

    No full text
    This article reports a secondary analysis of past therapy outcome meta- analysis. Fifteen meta-analysts provided effect sizes from 56 studies in previous reviews that met 1 of 3 increasingly stringent levels of criteria for clinical representativeness. The effect sizes were synthesized and compared with results from the original meta-analyses. Effect sizes from more clinically representative studies are the same size at all 3 criteria levels as in past meta-analyses. Almost no studies exist that meet the most stringent level of criteria. Results are interpreted cautiously because of controversy about what criteria best capture the notion of clinical representativeness, because so few experiments have tested therapy in clinical conditions, and because other models for exploring the generalizability of therapy outcome research to clinical conditions might yield different results

    The fluorescent protein sensor roGFP2-Orp1 monitors in vivo H2 O2 and thiol redox integration and elucidates intracellular H2 O2 dynamics during elicitor-induced oxidative burst in Arabidopsis

    No full text
    Hydrogen peroxide (H2 O2 ) is ubiquitous in cells and at the centre of developmental programmes and environmental responses. Its chemistry in cells makes H2 O2 notoriously hard to detect dynamically, specifically and at high resolution. Genetically encoded sensors overcome persistent shortcomings, but pH sensitivity, silencing of expression and a limited concept of sensor behaviour in vivo have hampered meaningful H2 O2 sensing in living plants. We establish H2 O2 monitoring in the cytosol and the mitochondria of Arabidopsis with the fusion protein roGFP2-Orp1 using confocal microscopy and multiwell fluorimetry. We confirm sensor oxidation by H2 O2 , show insensitivity to physiological pH changes, and demonstrate that glutathione dominates sensor reduction in vivo. We show the responsiveness of the sensor to exogenous H2 O2 , pharmacologically-induced H2 O2 release, and genetic interference with the antioxidant machinery in living Arabidopsis tissues. Monitoring intracellular H2 O2 dynamics in response to elicitor exposure reveals late and prolonged impact of the oxidative burst in the cytosol, which is modified in redox mutants. We provide a well-defined toolkit for H2 O2 monitoring in planta and show that intracellular H2 O2 measurements only carry meaning in the context of the endogenous thiol redox systems. This opens new possibilities to dissect plant H2 O2 dynamics and redox regulation, including intracellular NADPH-oxidase-mediated ROS signalling
    • …
    corecore