245 research outputs found
Differential contribution of the m7G-cap to the 5β² end-dependent translation initiation of mammalian mRNAs
Many mammalian mRNAs possess long 5β² UTRs with numerous stem-loop structures. For some of them, the presence of Internal Ribosome Entry Sites (IRESes) was suggested to explain their significant activity, especially when cap-dependent translation is compromised. To test this hypothesis, we have compared the translation initiation efficiencies of some cellular 5β² UTRs reported to have IRES-activity with those lacking IRES-elements in RNA-transfected cells and cell-free systems. Unlike viral IRESes, the tested 5β² UTRs with so-called βcellular IRESesβ demonstrate only background activities when placed in the intercistronic position of dicistronic RNAs. In contrast, they are very active in the monocistronic context and the cap is indispensable for their activities. Surprisingly, in cultured cells or cytoplasmic extracts both the level of stimulation with the cap and the overall translation activity do not correlate with the cumulative energy of the secondary structure of the tested 5β² UTRs. The cap positive effect is still observed under profound inhibition of translation with eIF4E-BP1 but its magnitude varies for individual 5β² UTRs irrespective of the cumulative energy of their secondary structures. Thus, it is not mandatory to invoke the IRES hypothesis, at least for some mRNAs, to explain their preferential translation when eIF4E is partially inactivated
Postoperative Concurrent Chemoradiotherapy Versus Postoperative Radiotherapy in High-Risk Cutaneous Squamous Cell Carcinoma of the Head and Neck: The Randomized Phase III TROG 05.01 Trial
Β© 2018 by American Society of Clinical Oncology Purpose To report the results of the Trans Tasman Radiation Oncology Group randomized phase III trial designed to determine whether the addition of concurrent chemotherapy to postoperative radiotherapy (CRT) improved locoregional control in patients with high-risk cutaneous squamous cell carcinoma of the head and neck. Patients and Methods The primary objective was to determine whether there was a difference in freedom from locoregional relapse (FFLRR) between 60 or 66 Gy (6 to 6.5 weeks) with or without weekly carboplatin (area under the curve 2) after resection of gross disease. Secondary efficacy objectives were to compare disease-free survival and overall survival. Results Three hundred twenty-one patients were randomly assigned, with 310 patients commencing allocated treatment (radiotherapy [RT] alone, n = 157; CRT, n = 153). Two hundred thirty-eight patients (77%) had high-risk nodal disease, 59 (19%) had high-risk primary or in-transit disease, and 13 (4%) had both. Median follow-up was 60 months. Median RT dose was 60 Gy, with 84% of patients randomly assigned to CRT completing six cycles of carboplatin. The 2- and 5-year FFLRR rates were 88% (95% CI, 83% to 93%) and 83% (95% CI, 77% to 90%), respectively, for RT and 89% (95% CI, 84% to 94%) and 87% (95% CI, 81% to 93%; hazard ratio, 0.84; 95% CI, 0.46 to 1.55; P = .58), respectively, for CRT. There were no significant differences in disease-free or overall survival. Locoregional failure was the most common site of first treatment failure, with isolated distant metastases as the first site of failure seen in 7% of both arms. Treatment was well tolerated in both arms, with no observed enhancement of RT toxicity with carboplatin. Grade 3 or 4 late toxicities were infrequent. Conclusion Although surgery and postoperative RT provided excellent FFLRR, there was no observed benefit with the addition of weekly carboplatin
HCV IRES manipulates the ribosome to promote the switch from translation initiation to elongation.
The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) drives noncanonical initiation of protein synthesis necessary for viral replication. Functional studies of the HCV IRES have focused on 80S ribosome formation but have not explored its role after the 80S ribosome is poised at the start codon. Here, we report that mutations of an IRES domain that docks in the 40S subunit's decoding groove cause only a local perturbation in IRES structure and result in conformational changes in the IRES-rabbit 40S subunit complex. Functionally, the mutations decrease IRES activity by inhibiting the first ribosomal translocation event, and modeling results suggest that this effect occurs through an interaction with a single ribosomal protein. The ability of the HCV IRES to manipulate the ribosome provides insight into how the ribosome's structure and function can be altered by bound RNAs, including those derived from cellular invaders
An internal ribosome entry site in the 5β² untranslated region of epidermal growth factor receptor allows hypoxic expression
The expression of epidermal growth factor receptor (EGFR/ERBB1/HER1) is implicated in the progress of numerous cancers, a feature that has been exploited in the development of EGFR antibodies and EGFR tyrosine kinase inhibitors as anti-cancer drugs. However, EGFR also has important normal cellular functions, leading to serious side effects when EGFR is inhibited. One damaging characteristic of many oncogenes is the ability to be expressed in the hypoxic conditions associated with the tumour interior. It has previously been demonstrated that expression of EGFR is maintained in hypoxic conditions via an unknown mechanism of translational control, despite global translation rates generally being attenuated under hypoxic conditions. In this report, we demonstrate that the human EGFR 5β² untranslated region (UTR) sequence can initiate the expression of a downstream open reading frame via an internal ribosome entry site (IRES). We show that this effect is not due to either cryptic promoter activity or splicing events. We have investigated the requirement of the EGFR IRES for eukaryotic initiation factor 4A (eIF4A), which is an RNA helicase responsible for processing RNA secondary structure as part of translation initiation. Treatment with hippuristanol (a potent inhibitor of eIF4A) caused a decrease in EGFR 5β² UTR-driven reporter activity and also a reduction in EGFR protein level. Importantly, we show that expression of a reporter gene under the control of the EGFR IRES is maintained under hypoxic conditions despite a fall in global translation rates
Recommended from our members
The mTOR regulated RNA-binding protein LARP1 requires PABPC1 for guided mRNA interaction.
The mammalian target of rapamycin (mTOR) is a critical regulator of cell growth, integrating multiple signalling cues and pathways. Key among the downstream activities of mTOR is the control of the protein synthesis machinery. This is achieved, in part, via the co-ordinated regulation of mRNAs that contain a terminal oligopyrimidine tract (TOP) at their 5'ends, although the mechanisms by which this occurs downstream of mTOR signalling are still unclear. We used RNA-binding protein (RBP) capture to identify changes in the protein-RNA interaction landscape following mTOR inhibition. Upon mTOR inhibition, the binding of LARP1 to a number of mRNAs, including TOP-containing mRNAs, increased. Importantly, non-TOP-containing mRNAs bound by LARP1 are in a translationally-repressed state, even under control conditions. The mRNA interactome of the LARP1-associated protein PABPC1 was found to have a high degree of overlap with that of LARP1 and our data show that PABPC1 is required for the association of LARP1 with its specific mRNA targets. Finally, we demonstrate that mRNAs, including those encoding proteins critical for cell growth and survival, are translationally repressed when bound by both LARP1 and PABPC1
The 5β² Leader of the mRNA Encoding the Mouse Neurotrophin Receptor TrkB Contains Two Internal Ribosomal Entry Sites that Are Differentially Regulated
A single internal ribosomal entry site (IRES) in conjunction with IRES transactivating factors (ITAFs) is sufficient to recruit the translational machinery to a eukaryotic mRNA independent of the cap structure. However, we demonstrate that the mouse TrkB mRNA contains two independent IRESes. The mouse TrkB mRNA consists of one of two 5β² leaders (1428 nt and 448 nt), both of which include the common 3β² exon (Ex2, 344 nt). Dicistronic RNA transfections and in vitro translation of monocistronic RNA demonstrated that both full-length 5β² leaders, as well as Ex2, exhibit IRES activity indicating the IRES is located within Ex2. Additional analysis of the upstream sequences demonstrated that the first 260 nt of exon 1 (Ex1a) also contains an IRES. Dicistronic RNA transfections into SH-SY5Y cells showed the Ex1a IRES is constitutively active. However, the Ex2 IRES is only active in response to retinoic acid induced neural differentiation, a state which correlates with the synthesis of the ITAF polypyrimidine tract binding protein (PTB1). Correspondingly, addition or knock-down of PTB1 altered Ex2, but not Ex1a IRES activity in vitro and ex vivo, respectively. These results demonstrate that the two functionally independent IRESes within the mouse TrkB 5β² leader are differentially regulated, in part by PTB1
Optimization of Energy-Consuming Pathways towards Rapid Growth in HPV-Transformed Cells
Cancer is a complex, multi-step process characterized by misregulated signal transduction and altered metabolism. Cancer cells divide faster than normal cells and their growth rates have been reported to correlate with increased metabolic flux during cell transformation. Here we report on progressive changes in essential elements of the biochemical network, in an in vitro model of transformation, consisting of primary human keratinocytes, human keratinocytes immortalized by human papillomavirus 16 (HPV16) and passaged repeatedly in vitro, and the extensively-passaged cells subsequently treated with the carcinogen benzo[a]pyrene. We monitored changes in cell growth, cell size and energy metabolism. The more transformed cells were smaller and divided faster, but the cellular energy flux was unchanged. During cell transformation the protein synthesis network contracted, as shown by the reduction in key cap-dependent translation factors. Moreover, there was a progressive shift towards internal ribosome entry site (IRES)-dependent translation. The switch from cap to IRES-dependent translation correlated with progressive activation of c-Src, an activator of AMP-activated protein kinase (AMPK), which controls energy-consuming processes, including protein translation. As cellular protein synthesis is a major energy-consuming process, we propose that the reduction in cell size and protein amount provide energy required for cell survival and proliferation. The cap to IRES-dependent switch seems to be part of a gradual optimization of energy-consuming mechanisms that redirects cellular processes to enhance cell growth, in the course of transformation
Nat Struct Mol Biol
Internal ribosome entry sites (IRESs) facilitate an alternative, end-independent pathway of translation initiation. A particular family of dicistroviral IRESs can assemble elongation-competent 80S ribosomal complexes in the absence of canonical initiation factors and initiator transfer RNA. We present here a cryo-EM reconstruction of a dicistroviral IRES bound to the 80S ribosome. The resolution of the cryo-EM reconstruction, in the subnanometer range, allowed the molecular structure of the complete IRES in its active, ribosome-bound state to be solved. The structure, harboring three pseudoknot-containing domains, each with a specific functional role, shows how defined elements of the IRES emerge from a compactly folded core and interact with the key ribosomal components that form the A, P and E sites, where tRNAs normally bind. Our results exemplify the molecular strategy for recruitment of an IRES and reveal the dynamic features necessary for internal initiation
5β²UTR Variants of Ribosomal Protein S19 Transcript Determine Translational Efficiency: Implications for Diamond-Blackfan Anemia and Tissue Variability
Background: Diamond-Blackfan anemia (DBA) is a lineage specific and congenital erythroblastopenia. The disease is associated with mutations in genes encoding ribosomal proteins resulting in perturbed ribosomal subunit biosynthesis. The RPS19 gene is mutated in approximately 25 % of DBA patients and a variety of coding mutations have been described, all presumably leading to haploinsufficiency. A subset of patients carries rare polymorphic sequence variants within the 59untranslated region (59UTR) of RPS19. The functional significance of these variants remains unclear. Methodology/Principal Findings: We analyzed the distribution of transcriptional start sites (TSS) for RPS19 mRNAs in testis and K562 cells. Twenty-nine novel RPS19 transcripts were identified with different 59UTR length. Quantification of expressed w.t. 59UTR variants revealed that a short 59UTR correlates with high levels of RPS19. The total levels of RPS19 transcripts showed a broad variation between tissues. We also expressed three polymorphic RPS19 59UTR variants identified in DBA patients. The sequence variants include two insertions (c.-147_-146insGCCA and c.-147_-146insAGCC) and one deletion (c.-144_-141delTTTC). The three 59UTR polymorphisms are associated with a 20β30 % reduction in RPS19 protein levels when compared to the wild-type (w.t.) 59UTR of corresponding length. Conclusions: The RPS19 gene uses a broad range of TSS and a short 59UTR is associated with increased levels of RPS19. Comparisons between tissues showed a broad variation in the total amount of RPS19 mRNA and in the distribution of TS
A La Autoantigen Homologue Is Required for the Internal Ribosome Entry Site Mediated Translation of Giardiavirus
Translation of Giardiavirus (GLV) mRNA is initiated at an internal ribosome entry site (IRES) in the viral transcript. The IRES localizes to a downstream portion of 5β² untranslated region (UTR) and a part of the early downstream coding region of the transcript. Recent studies indicated that the IRES does not require a pre-initiation complex to initiate translation but may directly recruit the small ribosome subunit with the help of a number of trans-activating protein factors. A La autoantigen homologue in the viral host Giardia lamblia, GlLa, was proposed as one of the potential trans-activating factors based on its specific binding to GLV-IRES in vitro. In this study, we further elucidated the functional role of GlLa in GLV-IRES mediated translation in Giardia by knocking down GlLa with antisense morpholino oligo, which resulted in a reduction of GLV-IRES activity by 40%. An over-expression of GlLa in Giardia moderately stimulated GLV-IRES activity by 20%. A yeast inhibitory RNA (IRNA), known to bind mammalian and yeast La autoantigen and inhibit Poliovirus and Hepatitis C virus IRES activities in vitro and in vivo, was also found to bind to GlLa protein in vitro and inhibited GLV-IRES function in vivo. The C-terminal domain of La autoantigen interferes with the dimerization of La and inhibits its function. An over-expression of the C-terminal domain (200β348aa) of GlLa in Giardia showed a dominant-negative effect on GLV-IRES activity, suggesting a potential inhibition of GlLa dimerization. HA tagged GlLa protein was detected mainly in the cytoplasm of Giardia, thus supporting a primary role of GlLa in translation initiation in Giardiavirus
- β¦