1,402 research outputs found
Melting behavior and different bound states in three-stranded DNA models
Thermal denaturation of DNA is often studied with coarse-grained models in
which native sequential base pairing is mimicked by the existence of attractive
interactions only between monomers at the same position along strands (Poland
and Scheraga models). Within this framework, the existence of a three strand
DNA bound state in conditions where a duplex DNA would be in the denaturated
state was recently predicted from a study of three directed polymer models on
simplified hierarchical lattices () and in dimensions. Such
phenomenon which is similar to the Efimov effect in nuclear physics was named
Efimov-DNA. In this paper we study the melting of the three-stranded DNA on a
Sierpinski gasket of dimensions by assigning extra weight factors to fork
openings and closings, to induce a two-strand DNA melting. In such a context we
can find again the existence of the Efimov-DNA-like state but quite
surprisingly we discover also the presence of a different phase, to be called a
mixed state, where the strands are pair-wise bound but without three chain
contacts. Whereas the Efimov DNA turns out to be a crossover near melting, the
mixed phase is a thermodynamic phase.Comment: corrected file uploade
Brownian yet non-Gaussian diffusion: from superstatistics to subordination of diffusing diffusivities
A growing number of biological, soft, and active matter systems are observed
to exhibit normal diffusive dynamics with a linear growth of the mean squared
displacement, yet with a non-Gaussian distribution of increments. Based on the
Chubinsky-Slater idea of a diffusing diffusivity we here establish and analyze
a minimal model framework of diffusion processes with fluctuating diffusivity.
In particular, we demonstrate the equivalence of the diffusing diffusivity
process with a superstatistical approach with a distribution of diffusivities,
at times shorter than the diffusivity correlation time. At longer times a
crossover to a Gaussian distribution with an effective diffusivity emerges.
Specifically, we establish a subordination picture of Brownian but non-Gaussian
diffusion processes, that can be used for a wide class of diffusivity
fluctuation statistics. Our results are shown to be in excellent agreement with
simulations and numerical evaluations.Comment: 19 pages, 6 figures, RevTeX. Physical Review X, at pres
Complete Phase Diagram of DNA Unzipping: Eye, Y-fork and triple point
We study the unzipping of double stranded DNA (dsDNA) by applying a pulling
force at a fraction from the anchored end. From exact
analytical and numerical results, the complete phase diagram is presented. The
phase diagram shows a strong ensemble dependence for various values of . In
addition, we show the existence of an ``eye'' phase and a triple point.Comment: 4 pages, 4 figures; revised version: misprints corrected. References
corrected/added. To appear in Physical Review Letter
An Upsilon Point in a Spin Model
We present analytic evidence for the occurrence of an upsilon point, an
infinite checkerboard structure of modulated phases, in the ground state of a
spin model. The structure of the upsilon point is studied by calculating
interface--interface interactions using an expansion in inverse spin
anisotropy.Comment: 18 pages ReVTeX file, including 6 figures encoded with uufile
Conversion of Stem Cells to Cancer Stem Cells: Undercurrent of Cancer Initiation
Cancer stem cells (CSCs) also known as cancer-initiating cells (CIC), are responsible for the sustained and uncontrolled growth of malignant tumors and are proposed to play significant roles in metastasis and recurrence. Several hypotheses have proposed that the events in either stem and/or differentiated cells, such as genomic instability, inflammatory microenvironment, cell fusion, and lateral gene transfer, should be considered as the possible origin of CSCs. However, until now, the exact origin of CSC has been obscure. The development of induced pluripotent stem cells (iPSCs) in 2007, by Yamanaka's group, has been met with much fervency and hailed as a breakthrough discovery by the scientific and research communities, especially in regeneration therapy. The studies on the development of CSC from iPSCs should also open a new page of cancer research, which will help in designing new therapies applicable to CSCs. Currently most reviews have focused on CSCs and CSC niches. However, the insight into the niche before the CSC niche should also be of keen interest. This review introduces the novel concept of cancer initiation introducing the conversion of iPSCs to CSCs and proposes a relationship between the inflammatory microenvironment and cancer initiation as the key concept of the cancer-inducing niche responsible for the development of CSC
Paclitaxel-Based Chemotherapy Targeting Cancer Stem Cells from Mono- to Combination Therapy
Paclitaxel (PTX) is a chemotherapeutical agent commonly used to treat several kinds of cancer. PTX is known as a microtubule-targeting agent with a primary molecular mechanism that disrupts the dynamics of microtubules and induces mitotic arrest and cell death. Simultaneously, other mechanisms have been evaluated in many studies. Since the anticancer activity of PTX was discovered, it has been used to treat many cancer patients and has become one of the most extensively used anticancer drugs. Regrettably, the resistance of cancer to PTX is considered an extensive obstacle in clinical applications and is one of the major causes of death correlated with treatment failure. Therefore, the combination of PTX with other drugs could lead to efficient therapeutic strategies. Here, we summarize the mechanisms of PTX, and the current studies focusing on PTX and review promising combinations
Metastasis Model of Cancer Stem Cell-Derived Tumors
Metastasis includes the dissemination of cancer cells from a malignant tumor and seed in distant sites inside the body forming secondary tumors. Metastatic cells from the primary tumor can move even before the cancer is detected. Therefore, metastases are responsible for more than 90% of cancer-related deaths. Over recent decades there has been adequate evidence suggesting the existence of CSCs with self-renewing and drug-resistant potency within heterogeneous tumors. Cancer stem cells (CSCs) act as a tumor initiating cells and have roles in tumor retrieve and metastasis. Our group recently developed a unique CSC model from mouse induced pluripotent stem cells cultured in the presence of cancer cell-conditioned medium that mimics tumors microenvironment. Using this model, we demonstrated a new method for studying metastasis by intraperitoneal transplantation of tumors and investigate the metastasis ability of cells from these segments. First of all, CSCs were injected subcutaneously in nude mice. The developed malignant tumors were minimized then transplanted into the peritoneal cavity. Following this, the developed tumor in addition to lung, pancreas and liver were then excised and analyzed. Our method showed the metastatic potential of CSCs with the ability of disseminated and moving to blood circulation and seeding in distant organs such as lung and pancreas. This method could provide a good model to study the mechanisms of metastasis according to CSC theory
Revisiting Cancer Stem Cells as the Origin of Cancer-Associated Cells in the Tumor Microenvironment: A Hypothetical View from the Potential of iPSCs
The tumor microenvironment (TME) has an essential role in tumor initiation and development. Tumor cells are considered to actively create their microenvironment during tumorigenesis and tumor development. The TME contains multiple types of stromal cells, cancer-associated fibroblasts (CAFs), Tumor endothelial cells (TECs), tumor-associated adipocytes (TAAs), tumor-associated macrophages (TAMs) and others. These cells work together and with the extracellular matrix (ECM) and many other factors to coordinately contribute to tumor growth and maintenance. Although the types and functions of TME cells are well understood, the origin of these cells is still obscure. Many scientists have tried to demonstrate the origin of these cells. Some researchers postulated that TME cells originated from surrounding normal tissues, and others demonstrated that the origin is cancer cells. Recent evidence demonstrates that cancer stem cells (CSCs) have differentiation abilities to generate the original lineage cells for promoting tumor growth and metastasis. The differentiation of CSCs into tumor stromal cells provides a new dimension that explains tumor heterogeneity. Using induced pluripotent stem cells (iPSCs), our group postulates that CSCs could be one of the key sources of CAFs, TECs, TAAs, and TAMs as well as the descendants, which support the self-renewal potential of the cells and exhibit heterogeneity. In this review, we summarize TME components, their interactions within the TME and their insight into cancer therapy. Especially, we focus on the TME cells and their possible origin and also discuss the multi-lineage differentiation potentials of CSCs exploiting iPSCs to create a society of cells in cancer tissues including TME
- …