122 research outputs found

    Spectral averaging techniques for Jacobi matrices with matrix entries

    Full text link
    A Jacobi matrix with matrix entries is a self-adjoint block tridiagonal matrix with invertible blocks on the off-diagonals. Averaging over boundary conditions leads to explicit formulas for the averaged spectral measure which can potentially be useful for spectral analysis. Furthermore another variant of spectral averaging over coupling constants for these operators is presented

    Low density expansion for Lyapunov exponents

    Full text link
    In some quasi-one-dimensional weakly disordered media, impurities are large and rare rather than small and dense. For an Anderson model with a low density of strong impurities, a perturbation theory in the impurity density is developed for the Lyapunov exponent and the density of states. The Lyapunov exponent grows linearly with the density. Anomalies of the Kappus-Wegner type appear for all rational quasi-momenta even in lowest order perturbation theory

    Scattering theory for lattice operators in dimension d≥3d\geq 3

    Full text link
    This paper analyzes the scattering theory for periodic tight-binding Hamiltonians perturbed by a finite range impurity. The classical energy gradient flow is used to construct a conjugate (or dilation) operator to the unperturbed Hamiltonian. For dimension d≥3d\geq 3 the wave operator is given by an explicit formula in terms of this dilation operator, the free resolvent and the perturbation. From this formula the scattering and time delay operators can be read off. Using the index theorem approach, a Levinson theorem is proved which also holds in presence of embedded eigenvalues and threshold singularities.Comment: Minor errors and misprints corrected; new result on absense of embedded eigenvalues for potential scattering; to appear in RM

    Simultaneous quantization of edge and bulk Hall conductivity

    Full text link
    The edge Hall conductivity is shown to be an integer multiple of e2/he^2/h which is almost surely independent of the choice of the disordered configuration. Its equality to the bulk Hall conductivity given by the Kubo-Chern formula follows from K-theoretic arguments. This leads to quantization of the Hall conductance for any redistribution of the current in the sample. It is argued that in experiments at most a few percent of the total current can be carried by edge states.Comment: 6 pages Latex, 1 figur

    Topological quantization of boundary forces and the integrated density of states

    Full text link
    For quantum systems described by Schr\"odinger operators on the half-space \RR^{d-1}\times\RR^{leq 0} the boundary force per unit area and unit energy is topologically quantised provided the Fermi energy lies in a gap of the bulk spectrum. Under this condition it is also equal to the integrated density of states at the Fermi energy.Comment: 7 page

    Random Dirac operators with time-reversal symmetry

    Get PDF
    Quasi-one-dimensional stochastic Dirac operators with an odd number of channels, time reversal symmetry but otherwise efficiently coupled randomness are shown to have one conducting channel and absolutely continuous spectrum of multiplicity two. This follows by adapting the criteria of Guivarch-Raugi and Goldsheid-Margulis to the analysis of random products of matrices in the group SO∗(2L)^*(2L), and then a version of Kotani theory for these operators. Absence of singular spectrum can be shown by adapting an argument of Jaksic-Last if the potential contains random Dirac peaks with absolutely continuous distribution.Comment: parts of introduction made more precise, corrections as follow-up on referee report

    An edge index for the Quantum Spin-Hall effect

    Full text link
    Quantum Spin-Hall systems are topological insulators displaying dissipationless spin currents flowing at the edges of the samples. In contradistinction to the Quantum Hall systems where the charge conductance of the edge modes is quantized, the spin conductance is not and it remained an open problem to find the observable whose edge current is quantized. In this paper, we define a particular observable and the edge current corresponding to this observable. We show that this current is quantized and that the quantization is given by the index of a certain Fredholm operator. This provides a new topological invariant that is shown to take same values as the Spin-Chern number previously introduced in the literature. The result gives an effective tool for the investigation of the edge channels' structure in Quantum Spin-Hall systems. Based on a reasonable assumption, we also show that the edge conducting channels are not destroyed by a random edge.Comment: 4 pages, 3 figure

    Spontaneous edge currents for the Dirac equation in two space dimensions

    Full text link
    Spontaneous edge currents are known to occur in systems of two space dimensions in a strong magnetic field. The latter creates chirality and determines the direction of the currents. Here we show that an analogous effect occurs in a field-free situation when time reversal symmetry is broken by the mass term of the Dirac equation in two space dimensions. On a half plane, one sees explicitly that the strength of the edge current is proportional to the difference between the chemical potentials at the edge and in the bulk, so that the effect is analogous to the Hall effect, but with an internal potential. The edge conductivity differs from the bulk (Hall) conductivity on the whole plane. This results from the dependence of the edge conductivity on the choice of a selfadjoint extension of the Dirac Hamiltonian. The invariance of the edge conductivity with respect to small perturbations is studied in this example by topological techniques.Comment: 10 pages; final versio

    Anomalous Drude Model

    Full text link
    A generalization of the Drude model is studied. On the one hand, the free motion of the particles is allowed to be sub- or superdiffusive; on the other hand, the distribution of the time delay between collisions is allowed to have a long tail and even a non-vanishing first moment. The collision averaged motion is either regular diffusive or L\'evy-flight like. The anomalous diffusion coefficients show complex scaling laws. The conductivity can be calculated in the diffusive regime. The model is of interest for the phenomenological study of electronic transport in quasicrystals.Comment: 4 pages, latex, 2 figures, to be published in Physical Review Letter
    • …
    corecore