415 research outputs found

    The influence of C3 and C4 vegetation on soil organic matter dynamics in contrasting semi-natural tropical ecosystems

    Get PDF
    This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.Variations in the carbon isotopic composition of soil organic matter (SOM) in bulk and fractionated samples were used to assess the influence of C3 and C4 vegetation on SOM dynamics in semi-natural tropical ecosystems sampled along a precipitation gradient in West Africa. Differential patterns in SOM dynamics in C3/C4 mixed ecosystems occurred at various spatial scales. Relative changes in C/ N ratios between two contrasting SOM fractions were used to evaluate potential site-scale differences in SOM dynamics between C3- and C4-dominated locations. These differences were strongly controlled by soil texture across the precipitation gradient, with a function driven by bulk δ 13C and sand content explaining 0.63 of the observed variability. The variation of δ 13C with soil depth indicated a greater accumulation of C3-derived carbon with increasing precipitation, with this trend also being strongly dependant on soil characteristics. The influence of vegetation thickening on SOM dynamics was also assessed in two adjacent, but structurally contrasting, transitional ecosystems occurring on comparable soils to minimise the confounding effects posed by climatic and edaphic factors. Radiocarbon analyses of sand-size aggregates yielded relatively short mean residence times (τ ) even in deep soil layers, while the most stable SOM fraction associated with silt and clay exhibited shorter τ in the savanna woodland than in the neighbouring forest stand. These results, together with the vertical variation observed in δ 13C values, strongly suggest that both ecosystems are undergoing a rapid transition towards denser closed canopy formations. However, vegetation thickening varied in intensity at each site and exerted contrasting effects on SOM dynamics. This study shows that the interdependence between biotic and abiotic factors ultimately determine whether SOM dynamics of Published by Copernicus Publications on behalf of the European Geosciences Union. 5042 G. Saiz et al.: Influence of C3/C4 on SOM in tropical biomes C3- and C4-derived vegetation are at variance in ecosystems where both vegetation types coexist. The results highlight the far-reaching implications that vegetation thickening may have for the stability of deep SOM.UK National Environment Research CouncilAustralian Institute of Nuclear Science and Engineering (AINSE Ltd

    Leaf economics and plant hydraulics drive leaf : wood area ratios

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordData accessibility: All data are archived and are available from the TRY plant trait data base: www.try-db.org (https://doi.org/10.1111/j.1365-2486.2011.02451.x).Biomass and area ratios between leaves, stems and roots regulate many physiological and ecological processes. The Huber value Hv (sapwood area/leaf area ratio) is central to plant water balance and drought responses. However, its coordination with key plant functional traits is poorly understood, which prevents developing trait-based prediction models. Based on theoretical arguments, we hypothesise that global patterns in Hv of terminal woody branches can be predicted from variables related to plant trait spectra, i.e., plant hydraulics and size and leaf economics. Using a global compilation of 1135 species-averaged Hv , we show that Hv varies over 3 orders of magnitude. Higher Hv are seen in short small-leaved low-SLA shrubs with low Ks in arid relative to tall large-leaved high-SLA trees with high Ks in moist environments. All traits depend on climate but climatic correlations are stronger for explanatory traits than Hv . Negative isometry is found between Hv and Ks , suggesting a compensation to maintain hydraulic supply to leaves across species. This work identifies the major global drivers of branch sapwood/leaf area ratios. Our approach based on widely available traits facilitates the development of accurate models of aboveground biomass allocation and helps predict vegetation responses to drought.Spanish Ministry of Economy and Competitiveness (MINECO)University of NottinghamSwedish Research Council Forma

    The influence of C3 and C4 vegetation on soil organic matter dynamics in contrasting semi-natural tropical ecosystems

    Get PDF
    Variations in the carbon isotopic composition of soil organic matter (SOM) in bulk and fractionated samples were used to assess the influence of C3 and C4 vegetation on SOM dynamics in semi-natural tropical ecosystems sampled along a precipitation gradient in West Africa. Differential patterns in SOM dynamics in C3/C4 mixed ecosystems occurred at various spatial scales. Relative changes in C=N ratios between two contrasting SOM fractions were used to evaluate potential site-scale differences in SOM dynamics between C3- and C4-dominated locations. These differences were strongly controlled by soil texture across the precipitation gradient, with a function driven by bulk 13C and sand content explaining 0.63 of the observed variability. The variation of 13C with soil depth indicated a greater accumulation of C3-derived carbon with increasing precipitation, with this trend also being strongly dependant on soil characteristics. The influence of vegetation thickening on SOM dynamics was also assessed in two adjacent, but structurally contrasting, transitional ecosystems occurring on comparable soils to minimise the confounding effects posed by climatic and edaphic factors. Radiocarbon analyses of sand-size aggregates yielded relatively short mean residence times ( ) even in deep soil layers, while the most stable SOM fraction associated with silt and clay exhibited shorter in the savanna woodland than in the neighbouring forest stand. These results, together with the vertical variation observed in 13C values, strongly suggest that both ecosystems are undergoing a rapid transition towards denser closed canopy formations.However, vegetation thickening varied in intensity at each site and exerted contrasting effects on SOM dynamics. Thisstudy shows that the interdependence between biotic and abiotic factors ultimately determine whether SOM dynamics of C3- and C4-derived vegetation are at variance in ecosystems where both vegetation types coexist. The results highlight the far-reaching implications that vegetation thickening may have for the stability of deep SOM. © 2015, Copernicus Publications

    Edaphic, structural and physiological contrasts across Amazon Basin forest-savanna ecotones suggest a role for potassium as a key modulator of tropical woody vegetation structure and function

    Get PDF
    Sampling along a precipitation gradient in tropical South America extending from ca. 0.8 to 2.0 m ag-1, savanna soils had consistently lower exchangeable cation concentrations and higher C/N ratios than nearby forest plots. These soil differences were also reflected in canopy averaged leaf traits with savanna trees typically having higher leaf mass per unit area but lower mass-based nitrogen (Nm) and potassium (Km). Both Nm and Km also increased with declining mean annual precipitation (PA), but most area-based leaf traits such as leaf photosynthetic capacity showed no systematic variation with PA or vegetation type. Despite this invariance, when taken in conjunction with other measures such as mean canopy height, area-based soil exchangeable potassium content, [K]sa , proved to be an excellent predictor of several photosynthetic properties (including 13C isotope discrimination). Moreover, when considered in a multivariate context with PA and soil plant available water storage capacity (θP) as covariates, [K]sa also proved to be an excellent predictor of stand-level canopy area, providing drastically improved fits as compared to models considering just PA and/or θP. Neither calcium, nor magnesium, nor soil pH could substitute for potassium when tested as alternative model predictors (ΔAIC > 10). Nor for any model could simple soil texture metrics such as sand or clay content substitute for either [K]sa or θP. Taken in conjunction with recent work in Africa and the forests of the Amazon Basin, this suggests-in combination with some newly conceptualised interacting effects of PA and θP also presented here-a critical role for potassium as a modulator of tropical vegetation structure and function.Natural Environment Research Council (NERC) TROBIT Consortium projectCNPqRoyal Society of London - Wolfson Research Merit Awar

    Monitoring plant functional diversity from space

    Get PDF
    The world’s ecosystems are losing biodiversity fast. A satellite mission designed to track changes in plant functional diversity around the globe could deepen our understanding of the pace and consequences of this change and how to manage it

    Foliar trait contrasts between African forest and savanna trees: Genetic versus environmental effects

    Get PDF
    Journal ArticleVariations in leaf mass per unit area (Ma) and foliar concentrations of N, P, C, K, Mg and Ca were determined for 365 trees growing in 23 plots along a West African precipitation gradient ranging from 0.29 to 1.62m a-1. Contrary to previous studies, no marked increase in Ma with declining precipitation was observed, but savanna tree foliar [N] tended to be higher at the drier sites (mass basis). Generally, Ma was slightly higher and [N] slightly lower for forest vs savanna trees with most of this difference attributable to differences in soil chemistry. No systematic variations in [P], [Mg] and [Ca] with precipitation or between trees of forest vs savanna stands were observed. We did, however, find a marked increase in foliar [K] of savanna trees as precipitation declined, with savanna trees also having a significantly lower [K] than those of nearby forest. These differences were not related to differences in soil nutrient status and were accompanied by systematic changes in [C] of opposite sign. We suggest an important but as yet unidentified role for K in the adaption of savanna species to periods of limited water availability; with foliar [K] being also an important factor differentiating tree species adapted to forest vs savanna soils within the 'zone of transition' of Western Africa.Natural Environment Research Council TROBIT Consortium projectRoyal Society - University Research Fellowshi
    corecore