1,530 research outputs found

    An RUL-informed approach for life extension of high-value assets

    Get PDF
    The conventional approaches for life-extension (LE) of industrial assets are largely qualitative and focus only on a few indicators at the end of an asset’s design life. However, an asset may consist of numerous individual components with different useful lives and therefore applying a single LE strategy to every component will not result in an efficient outcome. In recent years, many advanced analytics techniques have been proposed to estimate the remaining useful life (RUL) of the assets equipped with sensor technology. This paper proposes a data-driven model for LE decision-making based on RUL values predicted on a real-time basis during the asset’s operational life. Our proposed LE model is conceptually targeted at the component, unit, or subsystem level; however, an asset-level decision is made by aggregating information across all components. Consequently, LE is viewed and assessed as a series of ongoing activities, albeit carefully orchestrated in a manner similar to operation and maintenance (O&M). The application of the model is demonstrated using the publicly available NASA C-MAPSS dataset for large commercial turbofan engines. This approach will be very beneficial to asset owners and maintenance engineers as it seamlessly weaves LE strategies into O&M activities, thus optimizing resources

    Bimodality in low-luminosity E and S0 galaxies

    Get PDF
    Stellar population characteristics are presented for a sample of low-luminosity early-type galaxies (LLEs) in order to compare them with their more luminous counterparts. Long-slit spectra of a sample of 10 LLEs were taken with the ESO New Technology Telescope, selected for their low luminosities. Line strengths were measured on the Lick standard system. Lick indices for these LLEs were correlated with velocity dispersion (σ), alongside published data for a variety of Hubble types. The LLEs were found to fall below an extrapolation of the correlation for luminous ellipticals and were consistent with the locations of spiral bulges in plots of line strengths versus σ. Luminosity weighted average ages, metallicities and abundance ratios were estimated from χ2 fitting of 19 Lick indices to predictions from simple stellar population models. The LLEs appear younger than luminous ellipticals and of comparable ages to spiral bulges. These LLEs show a bimodal metallicity distribution, consisting of a low-metallicity group (possibly misclassified dwarf spheroidal galaxies) and a high-metallicity group (similar to spiral bulges). Finally, they have low α-element to iron peak abundance ratios indicative of slow, extended star formation

    Gating-like Motions and Wall Porosity in a DNA Nanopore Scaffold Revealed by Molecular Simulations

    Get PDF
    Recently developed synthetic membrane pores composed of folded DNA enrich the current range of natural and engineered protein pores and of nonbiogenic channels. Here we report all-atom molecular dynamics simulations of a DNA nanotube (DNT) pore scaffold to gain fundamental insight into its atomic structure, dynamics, and interactions with ions and water. Our multiple simulations of models of DNTs that are composed of a six-duplex bundle lead to a coherent description. The central tube lumen adopts a cylindrical shape while the mouth regions at the two DNT openings undergo gating-like motions which provide a possible molecular explanation of a lower conductance state observed in our previous experimental study on a membrane-spanning version of the DNT (ACS Nano 2015, 9, 1117-26). Similarly, the central nanotube lumen is filled with water and ions characterized by bulk diffusion coefficients while the gating regions exhibit temporal fluctuations in their aqueous volume. We furthermore observe that the porous nature of the walls allows lateral leakage of ions and water. This study will benefit rational design of DNA nanopores of enhanced stability of relevance for sensing applications, of nanodevices with tunable gating properties that mimic gated ion channels, or of nanopores featuring defined permeation behavior

    Galaxy And Mass Assembly (GAMA) : The mechanisms for quiescent galaxy formation at z<1

    Get PDF
    © 2016 The Authors. One key problem in astrophysics is understanding how and why galaxies switch off their star formation, building the quiescent population that we observe in the local Universe. From the Galaxy And Mass Assembly and VIsible MultiObject Spectrograph Public Extragalactic Redshift surveys, we use spectroscopic indices to select quiescent and candidate transition galaxies.We identify potentially rapidly transitioning post-starburst (PSB) galaxies and slower transitioning green-valley galaxies. Over the last 8Gyr, the quiescent population has grown more slowly in number density at high masses (M * > 10 11 M ⊙ ) than at intermediate masses (M * > 10 10.6 M ⊙ ). There is evolution in both the PSB and green-valley stellar mass functions, consistent with higher mass galaxies quenching at earlier cosmic times.At intermediatemasses (M * > 10 10.6 M ⊙ ), we find a green-valley transition time-scale of 2.6 Gyr. Alternatively, at z ~ 0.7, the entire growth rate could be explained by fast-quenching PSB galaxies, with a visibility time-scale of 0.5 Gyr. At lower redshift, the number density of PSBs is so low that an unphysically short visibility window would be required for them to contribute significantly to the quiescent population growth. The importance of the fast-quenching route may rapidly diminish at z 10 11 M ⊙ ), there is tension between the large number of candidate transition galaxies compared to the slow growth of the quiescent population. This could be resolved if not all high-mass PSB and green-valley galaxies are transitioning from star forming to quiescent, for example if they rejuvenate out of the quiescent population following the accretion of gas and triggering of star formation, or if they fail to completely quench their star formation

    Chandra Observations of "The Antennae" Galaxies (NGC 4038/39)

    Get PDF
    We report the results of a deep Chandra ACIS pointing at the merging system NGC 4038/39. We detect an extraordinarily luminous population of X-ray sources, with luminosity well above that of XRBs in M31 and the Milky Way. If these sources are unbeamed XRBs, our observations may point to them being 10-100Mo black hole counterparts. We detect an X-ray bright hot ISM, with features including bright superbubbles associated with the actively star-forming knots, regions where hot and warm (Hα\alpha) ISM intermingle, and a large-scale outflow.Comment: 7 pages, 10 figures, Accepted for publication in Ap

    Cardiovascular Disease, Single Nucleotide Polymorphisms; and the Renin Angiotensin System: Is There a MicroRNA Connection?

    Get PDF
    Essential hypertension is a complex disorder, caused by the interplay between many genetic variants, gene-gene interactions, and environmental factors. Given that the renin-angiotensin system (RAS) plays an important role in blood pressure (BP) control, cardiovascular regulation, and cardiovascular remodeling, special attention has been devoted to the investigation of single-nucleotide polymorphisms (SNP) harbored in RAS genes that may be associated with hypertension and cardiovascular disease. MicroRNAs (miRNAs) are a family of small, ∼21-nucleotide long, and nonprotein-coding RNAs that recognize target mRNAs through partial complementary elements in the 3′-untranslated region (3′-UTR) of mRNAs and inhibit gene expression by targeting mRNAs for translational repression or destabilization. Since miRNA SNPs (miRSNPs) can create, destroy, or modify miRNA binding sites, this review focuses on the hypothesis that transcribed target SNPs harbored in RAS mRNAs, that alter miRNA gene regulation and consequently protein expression, may contribute to cardiovascular disease susceptibility

    The Impact of Parameterized Convection on Climatological Precipitation in Atmospheric Global Climate Models

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.Convective parameterizations are widely believed to be essential for realistic simulations of the atmosphere. However, their deficiencies also result in model biases. The role of convection schemes in modern atmospheric models is examined using Selected Process On/Off Klima Intercomparison Experiment (SPOOKIE) simulations without parameterized convection and forced with observed sea surface temperatures. Convection schemes are not required for reasonable climatological precipitation. However, they are essential for reasonable daily precipitation and restraining extreme daily precipitation that otherwise develops. Systematic effects on lapse rate and humidity are likewise modest compared with the inter-model spread. Without parameterized convection Kelvin waves are more realistic. An unexpectedly large moist Southern Hemisphere storm track bias is identified. This storm track bias persists without convection schemes, as does the double intertropical convergence zone and excessive ocean precipitation biases. This suggests that model biases originate from processes other than convection or that convection schemes are missing key processes.PM, GKV and PGS are funded by the Natural Environment Research Council and Met Office as part of the EuroClim project (grant number NE/M006123/1), ParaCon project (grant number NE/N013123/1) and the Royal Society (Wolfson Foundation). MJW is supported by the Joint UK BEIS/Defra Met Office Hadley Centre Climate Programme number GA01101. SCS acknowledges the Australian Research Council (grant number FL150100035)

    H-ATLAS/GAMA and HeViCS – dusty early-type galaxies in different environments

    Get PDF
    The Herschel Space Observatory has had a tremendous impact on the study of extragalactic dust. Specifically, early-type galaxies (ETG) have been the focus of several studies. In this paper, we combine results from two Herschel studies – a Virgo cluster study Herschel Virgo Cluster Survey (HeViCS) and a broader, low-redshift Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS)/Galaxy and Mass Assembly (GAMA) study – and contrast the dust and associated properties for similar mass galaxies. This comparison is motivated by differences in results exhibited between multiple Herschel studies of ETG. A comparison between consistent modified blackbody derived dust mass is carried out, revealing strong differences between the two samples in both dust mass and dust-to-stellar mass ratio. In particular, the HeViCS sample lacks massive ETG with as high a specific dust content as found in H-ATLAS. This is most likely connected with the difference in environment for the two samples. We calculate nearest neighbour environment densities in a consistent way, showing that H-ATLAS ETG occupy sparser regions of the local Universe, whereas HeViCS ETG occupy dense regions. This is also true for ETG that are not Herschel-detected but are in the Virgo and GAMA parent samples. Spectral energy distributions are fit to the panchromatic data. From these, we find that in H-ATLAS the specific star formation rate anticorrelates with stellar mass and reaches values as high as in our Galaxy. On the other hand HeViCS ETG appear to have little star formation. Based on the trends found here, H-ATLAS ETG are thought to have more extended star formation histories and a younger stellar population than HeViCS ETG

    Association of Peripheral Membrane Proteins with Membranes: Free Energy of Binding of GRP1 PH Domain with Phosphatidylinositol Phosphate-Containing Model Bilayers

    Get PDF
    Understanding the energetics of peripheral protein-membrane interactions is important to many areas of biophysical chemistry and cell biology. Estimating free-energy landscapes by molecular dynamics (MD) simulation is challenging for such systems, especially when membrane recognition involves complex lipids, e.g., phosphatidylinositol phosphates (PIPs). We combined coarse-grained MD simulations with umbrella sampling to quantify the binding of the well-explored GRP1 pleckstrin homology (PH) domain to model membranes containing PIP molecules. The experimentally observed preference of GRP1-PH for PIP3 over PIP2 was reproduced. Mutation of a key residue (K273A) within the canonical PIP-binding site significantly reduced the free energy of PIP binding. The presence of a noncanonical PIP-interaction site, observed experimentally in other PH domains but not previously in GRP1-PH, was also revealed. These studies demonstrate how combining coarse-grained simulations and umbrella sampling can unmask the molecular basis of the energetics of interactions between peripheral membrane proteins and complex cellular membranes

    The Multi-Colored Hot Interstellar Medium of "The Antennae" Galaxies (NGC 4038/39)

    Full text link
    We report the results of the analysis of the extended soft emission discovered in the Chandra ACIS pointing at the merging system NGC 4038/39 (the Antennae). We present a `multi-color' X-ray image that suggests both extensive absorption by the dust in this system, peaking in the contact region, as well as variations in the temperature of different emitting regions of the hot interstellar medium (ISM). Spectral fits to multi-component thermal emission models confirm this picture and give a first evaluation of the parameters of the hot plasma. We compare the diffuse X-ray emission with radio continuum (6cm), HI, CO, and Hα\alpha images to take a first look at the multi-phase ISM of the Antennae galaxies. We find that the hot (X-ray) and cold (CO) gas have comparable thermal pressures in the two nuclear regions. We also conclude that the displacement between the peak of the diffuse X-ray emission in the north of the galaxy system, towards the inner regions of the northern spiral arm (as defined by Hα\alpha, radio continuum and HI), could result from ram pressure of infalling HI clouds.Comment: Accepted by Ap
    corecore