333 research outputs found
Rapidly exploring structural and dynamic properties of signaling networks using PathwayOracle
<p>Abstract</p> <p>Background</p> <p>In systems biology the experimentalist is presented with a selection of software for analyzing dynamic properties of signaling networks. These tools either assume that the network is in steady-state or require highly parameterized models of the network of interest. For biologists interested in assessing how signal propagates through a network under specific conditions, the first class of methods does not provide sufficiently detailed results and the second class requires models which may not be easily and accurately constructed. A tool that is able to characterize the dynamics of a signaling network using an unparameterized model of the network would allow biologists to quickly obtain insights into a signaling network's behavior.</p> <p>Results</p> <p>We introduce <it>PathwayOracle</it>, an integrated suite of software tools for computationally inferring and analyzing structural and dynamic properties of a signaling network. The feature which differentiates <it>PathwayOracle </it>from other tools is a method that can predict the response of a signaling network to various experimental conditions and stimuli using only the connectivity of the signaling network. Thus signaling models are relatively easy to build. The method allows for tracking signal flow in a network and comparison of signal flows under different experimental conditions. In addition, <it>PathwayOracle </it>includes tools for the enumeration and visualization of coherent and incoherent signaling paths between proteins, and for experimental analysis – loading and superimposing experimental data, such as microarray intensities, on the network model.</p> <p>Conclusion</p> <p><it>PathwayOracle </it>provides an integrated environment in which both structural and dynamic analysis of a signaling network can be quickly conducted and visualized along side experimental results. By using the signaling network connectivity, analyses and predictions can be performed quickly using relatively easily constructed signaling network models. The application has been developed in Python and is designed to be easily extensible by groups interested in adding new or extending existing features. <it>PathwayOracle </it>is freely available for download and use.</p
Unusual features of long-range density fluctuations in glass-forming organic liquids : a Rayleigh and Rayleigh-Brillouin light scattering in study
A new feature of glass-forming liquids, i.e., long-range density fluctuations of the order of 100 nm, has been extensively characterized by means of static light scattering, photon correlation spectroscopy and Rayleigh-Brillouin spectroscopy in orthoterphenyl (OTP) and 1,1-di(4'-methoxy-5' methyl-phenyl)-cyclohexane (BMMPC). These long-range density fluctuations result in the following unusual features observed in a light scattering experiment. which are not described by the existing theories: (i) strong q-dependent isotropic excess Rayleigh intensity, (ii) additional slow component in the polarized photon correlation function, and (iii) high Landau-Placzek ratio. These unusual features are equilibrium properties of the glass-forming liquids and depend only on temperature, provided that the sample has been equilibrated long enough. The temperature-dependent equilibration times were measured for BMMPC and are about 11 orders of magnitude longer than the a process. It was found that the glass-forming liquid OTP may occur in two states: with and without long-range density fluctuations (''clusters"). We have characterized the two states by static and dynamic light scattering in the temperature range from T-g to T-g + 200 K. The relaxation times of the a process as well as the parameters of the Brillouin line are identical in both OTP with and without clusters. The a process (density fluctuations) in OTP was characterized by measuring either the polarized (VV) or depolarized (VH) correlation function, which are practically identical and a-independent. This feature, which is commonly observed in glass-forming liquids, is not fully explained by the existing theories
Optimized pulses for the control of uncertain qubits
Constructing high-fidelity control fields that are robust to control, system,
and/or surrounding environment uncertainties is a crucial objective for quantum
information processing. Using the two-state Landau-Zener model for illustrative
simulations of a controlled qubit, we generate optimal controls for \pi/2- and
\pi-pulses, and investigate their inherent robustness to uncertainty in the
magnitude of the drift Hamiltonian. Next, we construct a quantum-control
protocol to improve system-drift robustness by combining environment-decoupling
pulse criteria and optimal control theory for unitary operations. By
perturbatively expanding the unitary time-evolution operator for an open
quantum system, previous analysis of environment-decoupling control pulses has
calculated explicit control-field criteria to suppress environment-induced
errors up to (but not including) third order from \pi/2- and \pi-pulses. We
systematically integrate this criteria with optimal control theory,
incorporating an estimate of the uncertain parameter, to produce improvements
in gate fidelity and robustness, demonstrated via a numerical example based on
double quantum dot qubits. For the qubit model used in this work, post facto
analysis of the resulting controls suggests that realistic control-field
fluctuations and noise may contribute just as significantly to gate errors as
system and environment fluctuations.Comment: 38 pages, 15 figures, RevTeX 4.1, minor modifications to the previous
versio
PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships
<p>Abstract</p> <p>Background</p> <p>Phylogenies, i.e., the evolutionary histories of groups of taxa, play a major role in representing the interrelationships among biological entities. Many software tools for reconstructing and evaluating such phylogenies have been proposed, almost all of which assume the underlying evolutionary history to be a tree. While trees give a satisfactory first-order approximation for many families of organisms, other families exhibit evolutionary mechanisms that cannot be represented by trees. Processes such as horizontal gene transfer (HGT), hybrid speciation, and interspecific recombination, collectively referred to as <it>reticulate evolutionary events</it>, result in <it>networks</it>, rather than trees, of relationships. Various software tools have been recently developed to analyze reticulate evolutionary relationships, which include SplitsTree4, LatTrans, EEEP, HorizStory, and T-REX.</p> <p>Results</p> <p>In this paper, we report on the PhyloNet software package, which is a suite of tools for analyzing reticulate evolutionary relationships, or <it>evolutionary networks</it>, which are rooted, directed, acyclic graphs, leaf-labeled by a set of taxa. These tools can be classified into four categories: (1) evolutionary network representation: reading/writing evolutionary networks in a newly devised compact form; (2) evolutionary network characterization: analyzing evolutionary networks in terms of three basic building blocks – trees, clusters, and tripartitions; (3) evolutionary network comparison: comparing two evolutionary networks in terms of topological dissimilarities, as well as fitness to sequence evolution under a maximum parsimony criterion; and (4) evolutionary network reconstruction: reconstructing an evolutionary network from a species tree and a set of gene trees.</p> <p>Conclusion</p> <p>The software package, PhyloNet, offers an array of utilities to allow for efficient and accurate analysis of evolutionary networks. The software package will help significantly in analyzing large data sets, as well as in studying the performance of evolutionary network reconstruction methods. Further, the software package supports the proposed eNewick format for compact representation of evolutionary networks, a feature that allows for efficient interoperability of evolutionary network software tools. Currently, all utilities in PhyloNet are invoked on the command line.</p
QSSPN: dynamic simulation of molecular interaction networks describing gene regulation, signalling and whole-cell metabolism in human cells
Motivation: Dynamic simulation of genome-scale molecular interaction networks will enable the mechanistic prediction of genotype–phenotype relationships. Despite advances in quantitative biology, full parameterization of whole-cell models is not yet possible. Simulation methods capable of using available qualitative data are required to develop dynamic whole-cell models through an iterative process of modelling and experimental validation. Results: We formulate quasi-steady state Petri nets (QSSPN), a novel method integrating Petri nets and constraint-based analysis to predict the feasibility of qualitative dynamic behaviours in qualitative models of gene regulation, signalling and whole-cell metabolism. We present the first dynamic simulations including regulatory mechanisms and a genome-scale metabolic network in human cell, using bile acid homeostasis in human hepatocytes as a case study. QSSPN simulations reproduce experimentally determined qualitative dynamic behaviours and permit mechanistic analysis of genotype–phenotype relationships. Availability and implementation: The model and simulation software implemented in Cþþ are available in supplementary material and at http://sysbio3.fhms.surrey.ac.uk/qsspn/. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin
The Signaling Petri Net-Based Simulator: A Non-Parametric Strategy for Characterizing the Dynamics of Cell-Specific Signaling Networks
Reconstructing cellular signaling networks and understanding how they work are major endeavors in cell biology. The scale and complexity of these networks, however, render their analysis using experimental biology approaches alone very challenging. As a result, computational methods have been developed and combined with experimental biology approaches, producing powerful tools for the analysis of these networks. These computational methods mostly fall on either end of a spectrum of model parameterization. On one end is a class of structural network analysis methods; these typically use the network connectivity alone to generate hypotheses about global properties. On the other end is a class of dynamic network analysis methods; these use, in addition to the connectivity, kinetic parameters of the biochemical reactions to predict the network's dynamic behavior. These predictions provide detailed insights into the properties that determine aspects of the network's structure and behavior. However, the difficulty of obtaining numerical values of kinetic parameters is widely recognized to limit the applicability of this latter class of methods
Testing Propositions Derived from Twitter Studies: Generalization and Replication in Computational Social Science
Replication is an essential requirement for scientific discovery. The current study aims to generalize and replicate 10 propositions made in previous Twitter studies using a representative dataset. Our findings suggest 6 out of 10 propositions could not be replicated due to the variations of data collection, analytic strategies employed, and inconsistent measurements. The study’s contributions are twofold: First, it systematically summarized and assessed some important claims in the field, which can inform future studies. Second, it proposed a feasible approach to generating a random sample of Twitter users and its associated ego networks, which might serve as a solution for answering social-scientific questions at the individual level without accessing the complete data archive.published_or_final_versio
Controlling the Outcome of the Toll-Like Receptor Signaling Pathways
The Toll-Like Receptors (TLRs) are proteins involved in the immune system that increase cytokine levels when triggered. While cytokines coordinate the response to infection, they appear to be detrimental to the host when reaching too high levels. Several studies have shown that the deletion of specific TLRs was beneficial for the host, as cytokine levels were decreased consequently. It is not clear, however, how targeting other components of the TLR pathways can improve the responses to infections. We applied the concept of Minimal Cut Sets (MCS) to the ihsTLR v1.0 model of the TLR pathways to determine sets of reactions whose knockouts disrupt these pathways. We decomposed the TLR network into 34 modules and determined signatures for each MCS, i.e. the list of targeted modules. We uncovered 2,669 MCS organized in 68 signatures. Very few MCS targeted directly the TLRs, indicating that they may not be efficient targets for controlling these pathways. We mapped the species of the TLR network to genes in human and mouse, and determined more than 10,000 Essential Gene Sets (EGS). Each EGS provides genes whose deletion suppresses the network's outputs
FORG3D: Force-directed 3D graph editor for visualization of integrated genome scale data
<p>Abstract</p> <p>Background</p> <p>Genomics research produces vast amounts of experimental data that needs to be integrated in order to understand, model, and interpret the underlying biological phenomena. Interpreting these large and complex data sets is challenging and different visualization methods are needed to help produce knowledge from the data.</p> <p>Results</p> <p>To help researchers to visualize and interpret integrated genomics data, we present a novel visualization method and bioinformatics software tool called FORG3D that is based on real-time three-dimensional force-directed graphs. FORG3D can be used to visualize integrated networks of genome scale data such as interactions between genes or gene products, signaling transduction, metabolic pathways, functional interactions and evolutionary relationships. Furthermore, we demonstrate its utility by exploring gene network relationships using integrated data sets from a <it>Caenorhabditis elegans </it>Parkinson's disease model.</p> <p>Conclusion</p> <p>We have created an open source software tool called FORG3D that can be used for visualizing and exploring integrated genome scale data.</p
- …