3,789 research outputs found
Framework for non-perturbative analysis of a Z(3)-symmetric effective theory of finite temperature QCD
We study a three dimensional Z(3)-symmetric effective theory of high
temperature QCD. The exact lattice-continuum relations, needed in order to
perform lattice simulations with physical parameters, are computed to order
O(a^0) in lattice perturbation theory. Lattice simulations are performed to
determine the phase structure of a subset of the parameter space.Comment: 28 pages, 11 figures; v3: references rearranged, typos corrected,
figs changed, published versio
Lattice analysis for the energy scale of QCD phenomena
We formulate a new framework in lattice QCD to study the relevant energy
scale of QCD phenomena. By considering the Fourier transformation of link
variable, we can investigate the intrinsic energy scale of a physical quantity
nonperturbatively. This framework is broadly available for all lattice QCD
calculations. We apply this framework for the quark-antiquark potential and
meson masses in quenched lattice QCD. The gluonic energy scale relevant for the
confinement is found to be less than 1 GeV in the Landau or Coulomb gauge.Comment: 4 pages, 4 figure
Classes of confining gauge field configurations
We present a numerical method to compute path integrals in effective SU(2)
Yang-Mills theories. The basic idea is to approximate the Yang-Mills path
integral by summing over all gauge field configurations, which can be
represented as a linear superposition of a small number of localized building
blocks. With a suitable choice of building blocks many essential features of
SU(2) Yang-Mills theory can be reproduced, particularly confinement. The
analysis of our results leads to the conclusion that topological charge as well
as extended structures are essential elements of confining gauge field
configurations.Comment: 18 pages, 16 figures, several sections adde
Cyclostationary shot noise in mesoscopic measurements
We discuss theoretically a setup where a time-dependent current consisting of
a DC bias and two sinusoidal harmonics is driven through a sample. If the
sample exhibits current-dependent shot noise, the down-converted noise power
spectrum varies depending on the local-oscillator phase of the mixer. The
theory of this phase-dependent noise is applied to discuss the measurement of
the radio-frequency single-electron transistor. We also show that this effect
can be used to measure the shot noise accurately even in nonlinear
high-impedance samples.Comment: 3 pages, 2 figure
2014 Fed Challenge Script: Current State of the Economy
Good afternoon everyone and thank you for having us here today. Though the recession began in 2007 and officially ended in 2009, recovery has been painfully slow. GDP growth has been insufficient to close the output gap, there continues to be slack in the labor market and inflation has stabilized below the Federal Reserve percent target. We are not meeting our dual mandate of full employment and stable prices even 6 years after the end of the recession. Despite some signs of strengthening in the economy during the past year, we do not believe that economy is on a self-sustaining path of recovery. Furthermore, the monetary policy actions taken by the Fed thus far to pull us out of the Great Recession have been insufficient. We propose a substantial strengthening of the our forward guidance; specifically, a commitment not to raise the federal funds rate until nominal GDP has returned to a path that we consider consistent with the dual mandate. [excerpt
- …