76 research outputs found
A Multidisciplinary Approach to Earthquake Research: Implementation of a Geochemical Geographic Information System for the Gargano Site, Southern Italy
A priority task for correct environmental planning is to evaluate Natural Hazards, especially
in highly populated areas. In particular, thorough investigations based on different Earth
Science techniques must be addressed for the Seismic Hazard Assessment (SHA) in tectonically active
areas. Not only the management but also the multidisciplinary analysis of all the SHA-related data
sets is best performed using a Geographic Information System. In this paper we show how a researchoriented
GIS is built and used in a practical case. The Geochemical Geographic Information System
(G2IS) was developed and applied to the Gargano promontory (southern Italy) in the framework of
an EC research project, the Geochemical Seismic Zonation (GSZ) Project. This multidisciplinary
– multiscaling powerful tool is described in its structure, updating procedures and manipulation
techniques. Preliminary results are presented on the detection of geochemically active fault zones
and their correlation with remote sensing data and other evidences of seismogenic structures.Published255-278JCR Journalreserve
ACBD5 deficiency causes a defect in peroxisomal very long-chain fatty acid metabolism
Background
Acyl-CoA binding domain containing protein 5 (ACBD5) is a peroxisomal membrane protein with a
cytosolic acyl-CoA binding domain. Because of its acyl-CoA binding domain, ACBD5 has been
assumed to function as an intracellular carrier of acyl-CoA esters. In addition, a role for ACBD5 in
pexophagy has been suggested. However, the precise role of ACBD5 in peroxisomal metabolism
and/or functioning has not yet been established. Previously, a genetic ACBD5 deficiency was
identified in three siblings with retinal dystrophy and white matter disease. We identified a pathogenic
mutation in ACBD5 in another patient and studied the consequences of the ACBD5 defect in patient
material and in ACBD5-deficient HeLa cells to uncover this role.
Methods
We studied a girl who presented with progressive leukodystrophy, syndromic cleft palate, ataxia and
retinal dystrophy. We performed biochemical, cell biological and molecular studies in patient material
and in ACBD5-deficient HeLa cells generated by CRISPR-Cas9 genome editing.
Results
We identified a homozygous deleterious indel mutation in ACBD5, leading to complete loss of ACBD5
protein in the patient. Our studies showed that ACBD5 deficiency leads to accumulation of very longchain
fatty acids (VLCFAs) due to impaired peroxisomal beta-oxidation. No effect on pexophagy was
found.
Conclusions
Our investigations strongly suggest that ACBD5 plays an important role in sequestering C26-CoA in
the cytosol and thereby facilitates transport into the peroxisome and subsequent beta-oxidation.
Accordingly, ACBD5 deficiency is a novel single peroxisomal enzyme deficiency caused by impaired
VLCFA metabolism and leading to retinal dystrophy and white matter disease.Supported in part by funding through the Marie Curie Initial Training Networks (ITN) action to
KDF, MS and HRW (FP7-2012-PERFUME-316723). MS is supported by the Biotechnology and
Biological Sciences Research Council (BB/K006231/1; BB/N01541X/1)
Contribution of Rare and Low-Frequency Variants to Multiple Sclerosis Susceptibility in the Italian Continental Population
Genome-wide association studies identified over 200 risk loci for multiple sclerosis (MS) focusing on common variants, which account for about 50% of disease heritability. The goal of this study was to investigate whether low-frequency and rare functional variants, located in MS-established associated loci, may contribute to disease risk in a relatively homogeneous population, testing their cumulative effect (burden) with gene-wise tests. We sequenced 98 genes in 588 Italian patients with MS and 408 matched healthy controls (HCs). Variants were selected using different filtering criteria based on allelic frequency and in silico functional impacts. Genes showing a significant burden (n = 17) were sequenced in an independent cohort of 504 MS and 504 HC. The highest signal in both cohorts was observed for the disruptive variants (stop-gain, stop-loss, or splicing variants) located in EFCAB13, a gene coding for a protein of an unknown function (p < 10–4). Among these variants, the minor allele of a stop-gain variant showed a significantly higher frequency in MS versus HC in both sequenced cohorts (p = 0.0093 and p = 0.025), confirmed by a meta-analysis on a third independent cohort of 1298 MS and 1430 HC (p = 0.001) assayed with an SNP array. Real-time PCR on 14 heterozygous individuals for this variant did not evidence the presence of the stop-gain allele, suggesting a transcript degradation by non-sense mediated decay, supported by the evidence that the carriers of the stop-gain variant had a lower expression of this gene (p = 0.0184). In conclusion, we identified a novel low-frequency functional variant associated with MS susceptibility, suggesting the possible role of rare/low-frequency variants in MS as reported for other complex diseases
Feasibility study (I stage) of CO2 geological storage by ECBM tecniques in the Sulcis Coal Province (SW Sardinia).
An ECBM feasibility study started for the Sulcis Coal Province (SW Sardinia, Italy): available geochemical, structural-geology, stratigraphic and reservoir engineering considerations as well as the newly gathered experimental data are discussed, including: fluid geochemistry (major and minor elements, dissolved gases, C and He isotopic ratios) of different strata/reservoir, coal composition and experimental data on CO2/CH4 adsorption-desorption on coal. A MapInfo GIS structure was built up including stratigraphic, geo-structural, hydro-geochemical, coal-compositional and environmental-impact information as well as the CO2 sources location and typology. Despite preliminary, these data highlighted both the challenging positive and negative aspects of the Sulcis Coal Province versus the exploitation of the ECBM technique. The most important objective of this phase I of the project is the selection of the best Sulcis ECBM test-pilot site, which will be followed (Phase II-2007) by the choice of a scaled up site and possibly by a future network (Phase III-2008). CO2 geological storage and CH4 production potentials in Sulcis have been grossly evaluated as a whole, in the frame of the Sardinia region CO2 sources, including the coal-fired power plants, both existent and foreseen (hundreds of millions of tonnes of CO2 are possible to be stored underground in the next decades).UnpublishedTrondheim, Norway4.4. Scenari e mitigazione del rischio ambientaleope
Groundwater of Rome
This paper describes the contents of the new Hydrogeological Map of the City of Rome (1:50,000 scale). The map extends to the entire municipality (1285 km2) and is based on both the most recent scientific studies on the groundwater field and new survey activities carried out in order to fill the data gaps in several areas of the examined territory. The map is the result of a combination of different urban groundwater expertise and Geographic Information System (GIS)-based mapping performed using the most recent available data and has been produced with the intention of furnishing the City of Rome with the most recent and updated information regarding groundwater
Feasibility study (I stage) of CO2 geological storage by ECBM tecniques in the Sulcis Coal Province (SW Sardinia).
An ECBM feasibility study started for the Sulcis Coal Province (SW Sardinia, Italy): available geochemical, structural-geology, stratigraphic and reservoir engineering considerations as well as the newly gathered experimental data are discussed, including: fluid geochemistry (major and minor elements, dissolved gases, C and He isotopic ratios) of different strata/reservoir, coal composition and experimental data on CO2/CH4 adsorption-desorption on coal. A MapInfo GIS structure was built up including stratigraphic, geo-structural, hydro-geochemical, coal-compositional and environmental-impact information as well as the CO2 sources location and typology. Despite preliminary, these data highlighted both the challenging positive and negative aspects of the Sulcis Coal Province versus the exploitation of the ECBM technique. The most important objective of this phase I of the project is the selection of the best Sulcis ECBM test-pilot site, which will be followed (Phase II-2007) by the choice of a scaled up site and possibly by a future network (Phase III-2008). CO2 geological storage and CH4 production potentials in Sulcis have been grossly evaluated as a whole, in the frame of the Sardinia region CO2 sources, including the coal-fired power plants, both existent and foreseen (hundreds of millions of tonnes of CO2 are possible to be stored underground in the next decades)
Expanded phenotype of AARS1-related white matter disease.
Purpose
Recent reports of individuals with cytoplasmic transfer RNA (tRNA) synthetase-related disorders have identified cases with phenotypic variability from the index presentations. We sought to assess phenotypic variability in individuals with AARS1-related disease.
Methods
A cross-sectional survey was performed on individuals with biallelic variants in AARS1. Clinical data, neuroimaging, and genetic testing results were reviewed. Alanyl tRNA synthetase (AlaRS) activity was measured in available fibroblasts.
Results
We identified 11 affected individuals. Two phenotypic presentations emerged, one with early infantile–onset disease resembling the index cases of AARS1-related epileptic encephalopathy with deficient myelination (n = 7). The second (n = 4) was a later-onset disorder, where disease onset occurred after the first year of life and was characterized on neuroimaging by a progressive posterior predominant leukoencephalopathy evolving to include the frontal white matter. AlaRS activity was significantly reduced in five affected individuals with both early infantile–onset and late-onset phenotypes.
Conclusion
We suggest that variants in AARS1 result in a broader clinical spectrum than previously appreciated. The predominant form results in early infantile–onset disease with epileptic encephalopathy and deficient myelination. However, a subgroup of affected individuals manifests with late-onset disease and similarly rapid progressive clinical decline. Longitudinal imaging and clinical follow-up will be valuable in understanding factors affecting disease progression and outcome
Geodynamics, geophysical and geochemical observations, and the role of CO2 degassing in the Apennines
An accurate survey of old and new datasets allowed us to probe the nature and role of fluids in the seismogenic processes of the Apennines mountain range in Italy. New datasets include the 1985–2021 instrumented seismicity catalog, the computed seismogenic thickness, and geodetic velocities and strains, whereas data from the literature comprise focal mechanism solutions, CO2 release, Moho depth, tomographic seismic velocities, heat flow and Bouguer gravity anomalies. Most of the inspected datasets highlight differences between the western and eastern domains of the Apennines, while the transition zone is marked by high geodetic strain, prevailing uplift at the surface and high seismic release, and spatially corresponds with the overlapping Tyrrhenian and Adriatic Mohos. Published tomographic models suggest the presence of a large hot asthenospheric mantle wedge which intrudes beneath the western side of the Apennines and disappears at the southern tip of the southern Apennines. This wedge modulates the thermal structure and rheology of the overlying crust as well as the melting of carbonate-rich sediments of the subducting Adriatic lithosphere. As a result, CO2-rich fluids of mantle-origin have been recognized in association with the occurrence of destructive seismic sequences in the Apennines. The stretched western domain of the Apennines is characterized by a broad pattern of emissions from CO2-rich fluids that vanishes beneath the axial belt of the chain, where fluids are instead trapped within crustal overpressurized reservoirs, favoring their involvement in the evolution of destructive seismic sequences in that region. In the Apennines, areas with high mantle He are associated with different degrees of metasomatism of the mantle wedge from north to south. Beneath the chain, the thickness and permeability of the crust control the formation of overpressurized fluid zones at depth and the seismicity is favored by extensional faults that act as high permeability pathways. This multidisciplinary study aims to contribute to our understanding of the fluid-related mechanisms of earthquake preparation, nucleation and evolution encouraging a multiparametric monitoring system of different geophysical and geochemical observables that could lead the creation of a data-constrained and reliable conceptual model of the role of fluids in the preparatory phase of earthquakes in the Apennines
- …