12,085 research outputs found

    A preliminary case study of the effect of shoe-wearing on the biomechanics of a horse’s foot

    Get PDF
    Horse racing is a multi-billion-dollar industry that has raised welfare concerns due to injured and euthanized animals. Whilst the cause of musculoskeletal injuries that lead to horse morbidity and mortality is multifactorial, pre-existing pathologies, increased speeds and substrate of the racecourse are likely contributors to foot disease. Horse hooves have the ability to naturally deform during locomotion and dissipate locomotor stresses, yet farriery approaches are utilised to increase performance and protect hooves from wear. Previous studies have assessed the effect of different shoe designs on locomotor performance; however, no biomechanical study has hitherto measured the effect of horseshoes on the stresses of the foot skeleton in vivo. This preliminary study introduces a novel methodology combining three-dimensional data from biplanar radiography with inverse dynamics methods and finite element analysis (FEA) to evaluate the effect of a stainless steel shoe on the function of a Thoroughbred horse's forefoot during walking. Our preliminary results suggest that the stainless steel shoe shifts craniocaudal, mediolateral and vertical GRFs at mid-stance. We document a similar pattern of flexion-extension in the PIP (pastern) and DIP (coffin) joints between the unshod and shod conditions, with slight variation in rotation angles throughout the stance phase. For both conditions, the PIP and DIP joints begin in a flexed posture and extend over the entire stance phase. At mid-stance, small differences in joint angle are observed in the PIP joint, with the shod condition being more extended than the unshod horse, whereas the DIP joint is extended more in the unshod than the shod condition. We also document that the DIP joint extends more than the PIP after midstance and until the end of the stance in both conditions. Our FEA analysis, conducted solely on the bones, shows increased von Mises and Maximum principal stresses on the forefoot phalanges in the shod condition at mid-stance, consistent with the tentative conclusion that a steel shoe might increase mechanical loading. However, because of our limited sample size none of these apparent differences have been tested for statistical significance. Our preliminary study illustrates how the shoe may influence the dynamics and mechanics of a Thoroughbred horse's forefoot during slow walking, but more research is needed to quantify the effect of the shoe on the equine forefoot during the whole stance phase, at faster speeds/gaits and with more individuals as well as with a similar focus on the hind feet. We anticipate that our preliminary analysis using advanced methodological approaches will pave the way for new directions in research on the form/function relationship of the equine foot, with the ultimate goal to minimise foot injuries and improve animal health and welfare

    Modeling the initiation of others into injection drug use, using data from 2,500 injectors surveyed in Scotland during 2008-2009

    Get PDF
    The prevalence of injection drug use has been of especial interest for assessment of the impact of blood-borne viruses. However, the incidence of injection drug use has been underresearched. Our 2-fold aim in this study was to estimate 1) how many other persons, per annum, an injection drug user (IDU) has the equivalent of full responsibility (EFR) for initiating into injection drug use and 2) the consequences for IDUs' replacement rate. EFR initiation rates are strongly associated with incarceration history, so that our analysis of IDUs' replacement rate must incorporate when, in their injecting career, IDUs were first incarcerated. To do so, we have first to estimate piecewise constant incarceration rates in conjunction with EFR initiation rates, which are then combined with rates of cessation from injecting to model IDUs' replacement rate over their injecting career, analogous to the reproduction number of an epidemic model. We apply our approach to Scotland's IDUs, using over 2,500 anonymous injector participants who were interviewed in Scotland's Needle Exchange Surveillance Initiative during 2008-2009. Our approach was made possible by the inclusion of key questions about initiations. Finally, we extend our model to include an immediate quit rate, as a reasoned compensation for higher-than-expected replacement rates, and we estimate how high initiates' quit rate should be for IDUs' replacement rate to be 1

    High-throughput in-situ characterization and modelling of precipitation kinetics in compositionally graded alloys

    Full text link
    The development of new engineering alloy chemistries is a time consuming and iterative process. A necessary step is characterization of the nano/microstructure to provide a link between the processing and properties of each alloy chemistry considered. One approach to accelerate the identification of optimal chemistries is to use samples containing a gradient in composition, ie. combinatorial samples, and to investigate many different chemistries at the same time. However, for engineering alloys, the final properties depend not only on chemistry but also on the path of microstructure development which necessitates characterization of microstructure evolution for each chemistry. In this contribution we demonstrate an approach that allows for the in-situ, nanoscale characterization of the precipitate structures in alloys, as a function of aging time, in combinatorial samples containing a composition gradient. The approach uses small angle x-ray scattering (SAXS) at a synchrotron beamline. The Cu-Co system is used for the proof-of-concept and the combinatorial samples prepared contain a gradient in Co from 0% to 2%. These samples are aged at temperatures between 450{\textdegree}C and 550{\textdegree}C and the precipitate structures (precipitate size, volume fraction and number density) all along the composition gradient are simultaneously monitored as a function of time. This large dataset is used to test the applicability and robustness of a conventional class model for precipitation that considers concurrent nucleation, growth and coarsening and the ability of the model to describe such a large dataset.Comment: Published in Acta Materiali

    Morphine activates neuroinflammation in a manner parallel to endotoxin

    Get PDF
    Opioids create a neuroinflammatory response within the CNS, compromising opioid-induced analgesia and contributing to various unwanted actions. How this occurs is unknown but has been assumed to be via classic opioid receptors. Herein, we provide direct evidence that morphine creates neuroinflammation via the activation of an innate immune receptor and not via classic opioid receptors. We demonstrate that morphine binds to an accessory protein of Toll-like receptor 4 (TLR4), myeloid differentiation protein 2 (MD-2), thereby inducing TLR4 oligomerization and triggering proinflammation. Small-molecule inhibitors, RNA interference, and genetic knockout validate the TLR4/MD-2 complex as a feasible target for beneficially modifying morphine actions. Disrupting TLR4/MD-2 protein–protein association potentiated morphine analgesia in vivo and abolished morphine-induced proinflammation in vitro, the latter demonstrating that morphine-induced proinflammation only depends on TLR4, despite the presence of opioid receptors. These results provide an exciting, nonconventional avenue to improving the clinical efficacy of opioids.Xiaohui Wang, Lisa C. Loram, Khara Ramos, Armando J. de Jesus, Jacob Thomas, Kui Cheng, Anireddy Reddy, Andrew A. Somogyi, Mark R. Hutchinson, Linda R. Watkins and Hang Yi

    Experimental hut comparisons of nets treated with carbamate or pyrethroid insecticides, washed or unwashed, against pyrethroid-resistant mosquitoes.

    No full text
    The efficacy against mosquitoes (Diptera: Culicidae) of a bednet treated with carbamate insecticide [carbosulfan capsule suspension (CS) 200 mg/m(2)] was compared with four types of pyrethroid-treated nets in veranda-trap huts at Yaokoffikro near Bouaké, Côte d'Ivoire, where the malaria vector Anopheles gambiae Giles carries the kdr gene (conferring pyrethroid resistance) at high frequency and Culex quinquefasciatus Say is also pyrethroid resistant. Pyrethroids compared were lambdacyhalothrin CS 18 mg/m(2), alphacypermethrin water dispersible granules (WG) 20 mg/m(2), deltamethrin 50 mg/m(2) (Permanet) and permethrin emulsifiable concentrate (EC) 500 mg/m(2). Insecticidal power and personal protection from mosquito bites were assessed before and after the nets were used for 8 months and hand washed five times in cold soapy water. Before washing, all treatments except permethrin significantly reduced blood-feeding and all had significant insecticidal activity against An. gambiae. The carbosulfan net gave significantly higher killing of An. gambiae than all pyrethroid treatments except the Permanet. Against Culex spp., carbosulfan was more insecticidal and gave a significantly better protective effect than any of the pyrethroid treatments. After washing, treated nets retained various degrees of efficacy against both mosquito genera - but least for the carbosulfan net. Washed nets with three types of pyrethroid treatment (alphacypermethrin, lambdacyhalothrin, permethrin) gave significantly higher mortality rates of Culex than in huts with the same pyrethroid-treated nets before washing. After five washes, the Permanet, which is sold as a long-lasting insecticidal product, performed no better than the other nets in our experimental conditions

    Quantifying Finite Temperature Effects in Atom Chip Interferometry of Bose-Einstein Condensates

    Full text link
    We quantify the effect of phase fluctuations on atom chip interferometry of Bose-Einstein condensates. At very low temperatures, we observe small phase fluctuations, created by mean-field depletion, and a resonant production of vortices when the two clouds are initially in anti-phase. At higher temperatures, we show that the thermal occupation of Bogoliubov modes makes vortex production vary smoothly with the initial relative phase difference between the two atom clouds. We also propose a technique to observe vortex formation directly by creating a weak link between the two clouds. The position and direction of circulation of the vortices is subsequently revealed by kinks in the interference fringes produced when the two clouds expand into one another. This procedure may be exploited for precise force measurement or motion detection.Comment: 7 pages, 5 figure

    Building a Bird: Musculoskeletal Modeling and Simulation of Wing-Assisted Incline Running during Avian Ontogeny

    Get PDF
    Flapping flight is the most power-demanding mode of locomotion, associated with a suite of anatomical specializations in extant adult birds. In contrast, many developing birds use their forelimbs to negotiate environments long before acquiring “flight adaptations,” recruiting their developing wings to continuously enhance leg performance and, in some cases, fly. How does anatomical development influence these locomotor behaviors? Isolating morphological contributions to wing performance is extremely challenging using purely empirical approaches. However, musculoskeletal modeling and simulation techniques can incorporate empirical data to explicitly examine the functional consequences of changing morphology by manipulating anatomical parameters individually and estimating their effects on locomotion. To assess how ontogenetic changes in anatomy affect locomotor capacity, we combined existing empirical data on muscle morphology, skeletal kinematics, and aerodynamic force production with advanced biomechanical modeling and simulation techniques to analyze the ontogeny of pectoral limb function in a precocial ground bird (Alectoris chukar). Simulations of wing-assisted incline running (WAIR) using these newly developed musculoskeletal models collectively suggest that immature birds have excess muscle capacity and are limited more by feather morphology, possibly because feathers grow more quickly and have a different style of growth than bones and muscles. These results provide critical information about the ontogeny and evolution of avian locomotion by (i) establishing how muscular and aerodynamic forces interface with the skeletal system to generate movement in morphing juvenile birds, and (ii) providing a benchmark to inform biomechanical modeling and simulation of other locomotor behaviors, both across extant species and among extinct theropod dinosaurs

    Effects of temperature upon the collapse of a Bose-Einstein condensate in a gas with attractive interactions

    Full text link
    We present a study of the effects of temperature upon the excitation frequencies of a Bose-Einstein condensate formed within a dilute gas with a weak attractive effective interaction between the atoms. We use the self-consistent Hartree-Fock Bogoliubov treatment within the Popov approximation and compare our results to previous zero temperature and Hartree-Fock calculations The metastability of the condensate is monitored by means of the l=0l=0 excitation frequency. As the number of atoms in the condensate is increased, with TT held constant, this frequency goes to zero, signalling a phase transition to a dense collapsed state. The critical number for collapse is found to decrease as a function of temperature, the rate of decrease being greater than that obtained in previous Hartree-Fock calculations.Comment: 4 pages LaTeX, 3 eps figures. To appear as a letter in J. Phys.

    Gapless finite-TT theory of collective modes of a trapped gas

    Full text link
    We present predictions for the frequencies of collective modes of trapped Bose-condensed 87^{87}Rb atoms at finite temperature. Our treatment includes a self-consistent treatment of the mean-field from finite-TT excitations and the anomolous average. This is the first gapless calculation of this type for a trapped Bose-Einstein condensed gas. The corrections quantitatively account for the downward shift in the m=2m=2 excitation frequencies observed in recent experiments as the critical temperature is approached.Comment: 4 pages Latex and 2 postscript figure
    • …
    corecore