15,168 research outputs found

    The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion

    Full text link
    For independent nearest-neighbour bond percolation on Z^d with d >> 6, we prove that the incipient infinite cluster's two-point function and three-point function converge to those of integrated super-Brownian excursion (ISE) in the scaling limit. The proof is based on an extension of the new expansion for percolation derived in a previous paper, and involves treating the magnetic field as a complex variable. A special case of our result for the two-point function implies that the probability that the cluster of the origin consists of n sites, at the critical point, is given by a multiple of n^{-3/2}, plus an error term of order n^{-3/2-\epsilon} with \epsilon >0. This is a strong statement that the critical exponent delta is given by delta =2.Comment: 56 pages, 3 Postscript figures, in AMS-LaTeX, with graphicx, epic, and xr package

    Elastic Instabilities within Antiferromagnetically Ordered Phase in the Orbitally-Frustrated Spinel GeCo2_2O4_4

    Full text link
    Ultrasound velocity measurements of the orbitally-frustrated GeCo2_2O4_4 reveal unusual elastic instabilities due to the phonon-spin coupling within the antiferromagnetic phase. Shear moduli exhibit anomalies arising from the coupling to short-range ferromagnetic excitations. Diplike anomalies in the magnetic-field dependence of elastic moduli reveal magnetic-field-induced orbital order-order transitions. These results strongly suggest the presence of geometrical orbital frustration which causes novel orbital phenomena within the antiferromagnetic phase.Comment: 5 pages, 3 figure

    Theoretical study of the (3x2) reconstruction of beta-SiC(001)

    Full text link
    By means of ab initio molecular dynamics and band structure calculations, as well as using calculated STM images, we have singled out one structural model for the (3x2) reconstruction of the Si-terminated (001) surface of cubic SiC, amongst several proposed in the literature. This is an alternate dimer-row model, with an excess Si coverage of 1/3, yielding STM images in good accord with recent measurements [F.Semond et al. Phys. Rev. Lett. 77, 2013 (1996)].Comment: To be published in PRB Rapid. Com

    On balanced complementation for regular t-wise balanced designs

    Get PDF
    AbstractVanstone has shown a procedure, called r-complementation, to construct a regular pairwise balanced design from an existing regular pairwise balanced design. In this paper, we give a generalization of r-complementation, called balanced complementation. Necessary and sufficient conditions for balanced complementation which gives a regular t-wise balanced design from an existing regular t-wise balanced design are shown. We characterize those aspects of designs which permit balanced complementation. Results obtained here will be applied to construct regular t-wise balanced designs which are useful in Statistics

    New Lower Bounds on the Self-Avoiding-Walk Connective Constant

    Full text link
    We give an elementary new method for obtaining rigorous lower bounds on the connective constant for self-avoiding walks on the hypercubic lattice ZdZ^d. The method is based on loop erasure and restoration, and does not require exact enumeration data. Our bounds are best for high dd, and in fact agree with the first four terms of the 1/d1/d expansion for the connective constant. The bounds are the best to date for dimensions d≥3d \geq 3, but do not produce good results in two dimensions. For d=3,4,5,6d=3,4,5,6, respectively, our lower bound is within 2.4\%, 0.43\%, 0.12\%, 0.044\% of the value estimated by series extrapolation.Comment: 35 pages, 388480 bytes Postscript, NYU-TH-93/02/0

    Scaling and Density of Lee-Yang Zeroes in the Four Dimensional Ising Model

    Get PDF
    The scaling behaviour of the edge of the Lee--Yang zeroes in the four dimensional Ising model is analyzed. This model is believed to belong to the same universality class as the Ï•44\phi^4_4 model which plays a central role in relativistic quantum field theory. While in the thermodynamic limit the scaling of the Yang--Lee edge is not modified by multiplicative logarithmic corrections, such corrections are manifest in the corresponding finite--size formulae. The asymptotic form for the density of zeroes which recovers the scaling behaviour of the susceptibility and the specific heat in the thermodynamic limit is found to exhibit logarithmic corrections too. The density of zeroes for a finite--size system is examined both analytically and numerically.Comment: 17 pages (4 figures), LaTeX + POSTSCRIPT-file, preprint UNIGRAZ-UTP 20-11-9

    On the measurement of the proton-air cross section using longitudinal shower profiles

    Full text link
    In this paper, we will discuss the prospects of deducing the proton-air cross section from fluorescence telescope measurements of extensive air showers. As it is not possible to observe the point of first interaction X1X_{\rm 1} directly, other observables closely linked to X1X_{\rm 1} must be inferred from the longitudinal profiles. This introduces a dependence on the models used to describe the shower development. The most straightforward candidate for a good correlation to X1X_{\rm 1} is the depth of shower maximum XmaxX_{\rm max}. We will discuss the sensitivity of an XmaxX_{\rm max}-based analysis on σp−air\sigma_{\rm p-air} and quantify the systematic uncertainties arising from the model dependence, parameters of the reconstruction method itself and a possible non-proton contamination of the selected shower sample.Comment: 4 pages, Proceedings for ISVHECRI Weihei 200
    • …
    corecore