21 research outputs found

    The new calcium antagonist lercanidipine and its enantiomers affect major processes of atherogenesis in vitro: is calcium entry involved?

    Get PDF
    Atherosclerosis results from multiple factors and involves several mechanisms, including endothelial monocyte and smooth muscle cell (SMC) changes, cholesterol accumulation, plaque rupture and thromboembolism. Calcium ions play a role in the initial and chronic development of atherosclerotic lesions. Several studies in experimental animal models have demonstrated the potential direct antiatherosclerotic effects of calcium antagonists. In this study the antiatherogenic activity of lercanidipine, a new lipophilic, second-generation calcium antagonist, was investigated. Lercanidipine and its enantiomers inhibited the replication and migration of arterial myocytes in concentrations ranging from 10 to 50 microM. The antiproliferative effect of lercanidipine was dose dependent, with a potency similar to that of lacidipine and nifedipine, and was unrelated to the stereoselectivity of enantiomers to bind L-type calcium channels. Lercanidipine and its enantiomers (25 microM) decreased the serum-induced elevation of [Ca2+]i in SMC, with the (S)-enantiomer (69% inhibition) being 2.4-fold more active than the (R)-counterpart (29% inhibition). The studies performed with enantiomers of lercanidipine suggest that the observed effects are not related to the blockade of voltage-dependent Ca2+ channels and confirm, at least in vitro, the pharmacological potential of the compound to influence negatively the process of atherogenesis

    The search campaign to identify and Image the Philae Lander on the surface of comet 67P/Churyumov-Gerasimenko

    Get PDF
    On the 12th of November 2014, the Rosetta Philae Lander descended to make the first soft touchdown on the surface of a comet – comet 67P/Churyumov- Gerasimenko. That soft touchdown did occur but due to the failure in the firing of its two harpoons, Philae bounced and travelled across the comet making contact with the surface twice more before finally landing in a shaded rocky location somewhere on the southern hemisphere of the comet. The search campaign, led by ESA, involved multiple teams across Europe with a wide range of techniques used in support of it. This search campaign would continue through 2015 where a prime candidate on the surface was identified and on into 2016 to end on the 2nd of September 2016 when a definitive and conclusive image was taken of the lander on the surface of the comet, confirming the prime candidate to indeed be Philae

    Rosetta fly-by at asteroid (21) Lutetia: An overview

    No full text

    Effect of the New Calcium Antagonist Lercanidipine and Its Enantiomers on the Migration and Proliferation of Arterial Myocytes

    No full text
    The in vitro effects were investigated of the new dihydropyridine calcium antagonist (CA) lercanidipine and its enantiomers on arterial myocyte (smooth muscle cell; SMC) migration and proliferation as related to L-type calcium channel inhibition. Lercanidipine and its enantiomers inhibited the replication and migration of arterial myocytes in concentration ranging from 10 to 50 microM. The antiproliferative effect of lercanidipine, evaluated as cell number, was dose dependent, with a potency similar to that of lacidipine and nifedipine, and was unrelated to the stereoselectivity of enantiomers to bind L-type calcium channels. The cell doubling time increased with drug concentration < or = 122 versus 38 h for controls. The cell growth inhibition induced by lercanidipine and its enantiomers was reversible. Lercanidipine dose dependently decreased [3H]thymidine incorporation into DNA; the (R)-enantiomer, displaying the lowest CA activity, was the most potent in this respect. The tested compounds were able to inhibit fibrinogen-induced myocyte migration in a dose-dependent manner, with the (R)-enantiomer showing the more pronounced effect. To directly rule out the role of calcium channels in the antiatherosclerotic properties of lercanidipine, we examined the effect of the compounds on serum-stimulated calcium influx in SMC. Fluorimetry of Fluo 3 was used to measure changes in free cytosolic Ca2+ concentration ([Ca2+]i) in SMC after long-term preincubation (24 h) with the tested CA. Lercanidipine and its enantiomers (25 microM) decreased the serum-induced elevation of [Ca2+]i in SMC with the (S)-enantiomer (69% inhibition) 2.4-fold more active than the counterpart and the racemate (29% inhibition). In conclusion, our in vitro results suggest that lercanidipine may directly interfere with events involved in atherogenesis. The studies performed with enantiomers of lercanidipine suggest that the observed effects are not related to the blockade of voltage-dependent Ca2+ channels and confirm at least in vitro a pharmacologic potential of the compound to negatively influence the process of atherogenesis

    The new calcium antagonist lercanidipine and its enantiomers affect major processes of atherogenesis in vitro: is calcium entry involved?

    No full text
    Atherosclerosis results from multiple factors and involves several mechanisms, including endothelial monocyte and smooth muscle cell (SMC) changes, cholesterol accumulation, plaque rupture and thromboembolism. Calcium ions play a role in the initial and chronic development of atherosclerotic lesions. Several studies in experimental animal models have demonstrated the potential direct antiatherosclerotic effects of calcium antagonists. In this study the antiatherogenic activity of lercanidipine, a new lipophilic, second-generation calcium antagonist, was investigated. Lercanidipine and its enantiomers inhibited the replication and migration of arterial myocytes in concentrations ranging from 10 to 50 microM. The antiproliferative effect of lercanidipine was dose dependent, with a potency similar to that of lacidipine and nifedipine, and was unrelated to the stereoselectivity of enantiomers to bind L-type calcium channels. Lercanidipine and its enantiomers (25 microM) decreased the serum-induced elevation of [Ca2+]i in SMC, with the (S)-enantiomer (69% inhibition) being 2.4-fold more active than the (R)-counterpart (29% inhibition). The studies performed with enantiomers of lercanidipine suggest that the observed effects are not related to the blockade of voltage-dependent Ca2+ channels and confirm, at least in vitro, the pharmacological potential of the compound to influence negatively the process of atherogenesis

    Heterotrimeric G proteins demonstrate differential sensitivity to beta-arrestin dependent desensitization.

    No full text
    G15 is a heterotrimeric G protein of the Gq/11 family. In this study, we describe its exceptional poor sensitivity to the general regulatory mechanism of G protein-coupled receptor (GPCR) desensitization. Enhancing beta2 adrenergic receptor desensitization by arrestin overexpression, did not affect signalling to G15. Similarly, increased levels of arrestin did not affect G15 signalling triggered by the activation of V2 vasopressin and delta opioid receptors. Furthermore, co-immunoprecipitation experiments showed that G15 alpha subunit (as opposed to Galphaq and Galphas) is recruited to a V2 vasopressin receptor mutant that is constitutively desensitized by beta-arrestin. Interestingly, co-expression of Galpha15 partially rescued cell surface localization and signalling capabilities of the same mutant receptor and reduced beta2 adrenergic receptor internalization. Taken together, these findings provide evidence for a novel mechanism whereby GPCR desensitization can be bypassed and G15 can support sustained signalling in cells chronically exposed to hormones or neurotransmitters
    corecore