1,075 research outputs found
Sub-Golgi distribution in rat liver of CMP-NeuAc GM3- and CMP-NeuAc:GT1b alpha 2----8sialyltransferases and comparison with the distribution of the other glycosyltransferase activities involved in ganglioside biosynthesis.
Using a sucrose density gradient fractionation of a highly purified Golgi apparatus from rat liver, we determined the sub-Golgi distribution of CMP-NeuAc:GM3 ganglioside alpha 2----8sialyltransferase (GM3-SAT) and CMP-NeuAc:GT1b ganglioside alpha 2----8sialyltransferase (GT1b-SAT), in comparison with that of the other glycosyltransferase activities involved in ganglioside biosynthesis. While GM3-SAT was recovered in several density fractions, GT1b-SAT was mainly found on less dense sub-Golgi membranes; this indicates that these two activities are physically separate. Moreover, with regard to the monosialo pathway, CMP-NeuAc:lactosylceramide alpha 2----3sialyltransferase, UDP-GalNAc:GM3 ganglioside beta 1----4N-acetylgalactosaminyltransferase, UDP-Gal:GM2 ganglioside beta 1----3galactosyltransferase, and CMP-NeuAc:GM1 ganglioside alpha 2----3sialyltransferase were resolved from more dense to less dense fractions, respectively. In the disialo pathway, UDP-GalNAc:GD3 ganglioside beta 1----4N-acetylgalactosaminyltransferase, UDP-Gal:GD2 ganglioside beta 1----3galactosyltransferase and CMP-NeuAc:GD1b ganglioside alpha 2----3sialyltransferase co-distributed with the corresponding activities of the monosialo pathway. These last results indicate that many Golgi glycosyltransferases involved in ganglioside biosynthesis are localized in the order in which they act
Enhanced oxidation activity from modified ceria: MnOx-ceria, CrOx-ceria and Mg doped VOx-ceria
Ceria is an important component of catalysts for oxidation reactions that proceed through the Mars-van Krevelen mechanism, promoting activity. A paradigm example of this is the VOx–CeO2 system for oxidative dehydrogenation reactions, where vanadium oxide species are supported on ceria and a special synergy between them is behind the enhanced activity: reduction of the catalyst is promoted by ceria undergoing reduction. This leads to favourable oxygen vacancy formation and hydrogen adsorption energies—useful descriptors for the oxidation activity of VOx–CeO2 catalysts. In this paper, we examine if this promoting effect on ceria-based catalysts holds for other metal oxide modifiers and we investigate MnOn– and CrOn–CeO2(111) (n = 0 − 4) as examples. We show, combining density functional theory calculations and statistical thermodynamics that similarly to the vanadia modifier, the stable species in each case is MnO2– and CrO2–CeO2. Both show favourable energetics for oxygen vacancy formation and hydrogen adsorption, indicating that VO2–CeO2 is not the only system of this type that can have an enhanced activity for oxidation reactions. However, the mechanism involved in each case is different: CrO2–CeO2 shows similar properties to VO2–CeO2 with ceria reduction upon oxygen removal stabilising the 5+ oxidation state of Cr. In contrast, with MnO2–CeO2, Mn is preferentially reduced. Finally, a model system of VO2–Mg:CeO2 is explored that shows a synergy between VO2 modification and Mg doping. These results shed light on the factors involved in active oxidation catalysts based on supported metal oxides on ceria that should be taken into consideration in a rational design of such catalysts
Reachability analysis for neural agent-environment systems
We develop a novel model for studying agent-environment systems, where the agents are implemented via feed-forward ReLU neural networks. We provide a semantics and develop a method to verify automatically that no unwanted states are reached by the system during its evolution. We study several reachability problems for the system, ranging from one-step reachability, to fixed multi-step and arbitrary-step to study the system evolution. We also study the decision problem of whether an agent, realised via feed-forward ReLU networks will perform an action in a system run. Whenever possible, we give tight complexity bounds to decision problems intro- duced. We automate the various reachability problems stud- ied by recasting them as mixed-integer linear programming problems. We present an implementation and discuss the ex- perimental results obtained on a range of test cases
Verification of RNN-based neural agent-environment systems
We introduce agent-environment systems where the agent is stateful and executing a ReLU recurrent neural network. We define and study their verification problem by providing equivalences of recurrent and feed-forward neural networks on bounded execution traces. We give a sound and complete procedure for their verification against properties specified in a simplified version of LTL on bounded executions. We present an implementation and discuss the experimental results obtained
Facet-dependent stability of near-surface oxygen vacancies and excess charge localization at CeO2surfaces
To study the dependence of the relative stability of surface (V A) and subsurface (VB) oxygen vacancies with the crystal facet of CeO2, the reduced (100), (110) and (111) surfaces, with two different concentrations of vacancies, were investigated by means of density functional theory (DFT + U) calculations. The results show that the trend in the near-surface vacancy formation energies for comparable vacancy spacings, i.e. (110) < (100) < (111), does not follow the one in the surface stability of the facets, i.e. (111) < (110) < (100). The results also reveal that the preference of vacancies for surface or subsurface sites, as well as the preferred location of the associated Ce3+ polarons, are facet- and concentration-dependent. At the higher vacancy concentration, the V A is more stable than the V B at the (110) facet whereas at the (111), it is the other way around, and at the (100) facet, both the V A and the VB have similar stability. The stability of the V A vacancies, compared to that of the V B, is accentuated as the concentration decreases. Nearest neighbor polarons to the vacant sites are only observed for the less densely packed (110) and (100) facets. These findings are rationalized in terms of the packing density of the facets, the lattice relaxation effects induced by vacancy formation and the localization of the excess charge, as well as the repulsive Ce3+-Ce3+ interactions.Fil: Pérez Bailac, Patricia. Universidad Autónoma de Madrid; España. Consejo Superior de Investigaciones CientÃficas; EspañaFil: Lustemberg, Pablo German. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - Rosario. Instituto de FÃsica de Rosario. Universidad Nacional de Rosario. Instituto de FÃsica de Rosario; Argentina. Consejo Superior de Investigaciones CientÃficas; EspañaFil: Ganduglia Pirovano, M. Verónica. Consejo Superior de Investigaciones CientÃficas; Españ
Adlayer core-level shifts of random metal overlayers on transition-metal substrates
We calculate the difference of the ionization energies of a core-electron of
a surface alloy, i.e., a B-atom in a A_(1-x) B_x overlayer on a
fcc-B(001)-substrate, and a core-electron of the clean fcc-B(001) surface using
density-functional-theory. We analyze the initial-state contributions and the
screening effects induced by the core hole, and study the influence of the
alloy composition for a number of noble metal-transition metal systems. Data
are presented for Cu_(1-x)Pd_x/Pd(001), Ag_(1-x) Pd_x/Pd(001), Pd_(1-x)
Cu_x/Cu(001), and Pd_(1-x) Ag_x/Ag(001), changing x from 0 to 100 %. Our
analysis clearly indicates the importance of final-state screening effects for
the interpretation of measured core-level shifts. Calculated deviations from
the initial-state trends are explained in terms of the change of inter- and
intra-atomic screening upon alloying. A possible role of alloying on the
chemical reactivity of metal surfaces is discussed.Comment: 4 pages, 2 figures, Phys. Rev. Letters, to appear in Feb. 199
- …