332 research outputs found
A posteriori analysis of Chorin-Temam scheme for Stokes equations
We consider Chorin-Temam scheme (the simplest pressure-correction projection
method) for the time-discretization of an unstationary Stokes problem. Inspired
by the analyses of the Backward Euler scheme performed by C.Bernardi and
R.Verf\"urth, we derive a posteriori estimators for the error on the velocity
gradient in L2 norm. Our invesigation is supported by numerical experiments
Some Mathematical and Numerical Aspects inAluminum Production
In this paper, we present a mathematical modeling of some magnetohydrodynamic effects arising in an aluminum production cell as well as its numerical approximation by a finite element method. We put the emphasis on the magnetic effects which live in the whole three dimensional space and which are solved numerically with a domain decomposition metho
Determining Ratios of WIMP-Nucleon Cross Sections from Direct Dark Matter Detection Data
Weakly Interacting Massive Particles (WIMPs) are one of the leading
candidates for Dark Matter. So far the usual procedure for constraining the
WIMP-nucleon cross sections in direct Dark Matter detection experiments have
been to fit the predicted event rate based on some model(s) of the Galactic
halo and of WIMPs to experimental data. One has to assume whether the
spin-independent (SI) or the spin-dependent (SD) WIMP-nucleus interaction
dominates, and results of such data analyses are also expressed as functions of
the as yet unknown WIMP mass. In this article, I introduce methods for
extracting information on the WIMP-nucleon cross sections by considering a
general combination of the SI and SD interactions. Neither prior knowledge
about the local density and the velocity distribution of halo WIMPs nor about
their mass is needed. Assuming that an exponential-like shape of the recoil
spectrum is confirmed from experimental data, the required information are only
the measured recoil energies (in low energy ranges) and the number of events in
the first energy bin from two or more experiments.Comment: 33 pages, 20 eps figures; v2: typos fixed, references added and
updated, revised version for publicatio
Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition
The coaxial laser cladding process is the heart of direct metal deposition (DMD). Rapid materials processing, such as DMD, is steadily becoming a tool for synthesis of materials, as well as rapid manufacturing. Mathematical models to develop the fundamental understanding of the physical phenomena associated with the coaxial laser cladding process are essential to further develop the science base. A three-dimensional transient model was developed for a coaxial powder injection laser cladding process. Physical phenomena including heat transfer, melting and solidification phase changes, mass addition, and fluid flow in the melt pool, were modeled in a self-consistent manner. Interactions between the laser beam and the coaxial powder flow, including the attenuation of beam intensity and temperature rise of powder particles before reaching the melt pool were modeled with a simple heat balance equation. The level-set method was implemented to track the free surface movement of the melt pool, in a continuous laser cladding process. The governing equations were discretized using the finite volume approach. Temperature and fluid velocity were solved for in a coupled manner. Simulation results such as the melt pool width and length, and the height of solidified cladding track were compared with experimental results and found to be reasonably matched.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87766/2/024903_1.pd
Microwave apparatus for gravitational waves observation
In this report the theoretical and experimental activities for the
development of superconducting microwave cavities for the detection of
gravitational waves are presented.Comment: 42 pages, 28 figure
Don't forget the jumper's knee in the young sportsman: evaluation of patellar tendinopathy with a high frequency ultrasound probe.
8Patellar tendinopathy, or Jumper's knee, is a painful knee condition caused by inflammation of the patella tendon. This condition is most frequently observed in subjects who play sports that require repetitive regular jumping. Jumper's knee is frequently misdiagnosed as a minor injury and many athletes, like our patient, keep on training and competing and either tend to ignore the injury or attempt to treat it themselves. However, jumper's knee is a serious condition that requires a correct and timely diagnosis, which often necessitates ultrasound investigation in order to start the most appropriate treatment.openopenRuaro B; Cutolo M; Alessandri E; Zaottini F; Picasso R; Pistoia F; Ferrari G; Martinoli C.Ruaro, B; Cutolo, M; Alessandri, E; Zaottini, F; Picasso, R; Pistoia, F; Ferrari, G; Martinoli, C
- …