133 research outputs found

    A Comparison between Position-Based and Image-Based Dynamic Visual Servoings in the Control of a Translating Parallel Manipulator

    Get PDF
    Two different visual servoing controls have been developed to govern a translating parallel manipulator with an eye-in-hand configuration, That is, a position-based and an image-based controller. The robot must be able to reach and grasp a target randomly positioned in the workspace; the control must be adaptive to compensate motions of the target in the 3D space. The trajectory planning strategy ensures the continuity of the velocity vector for both PBVS and IBVS controls, whereas a replanning event is needed. A comparison between the two approaches is given in terms of accuracy, fastness, and stability in relation to the robot peculiar characteristics

    Dynamic modelling of a 3-CPU parallel robot via screw theory

    Get PDF
    The article describes the dynamic modelling of I.Ca.Ro., a novel Cartesian parallel robot recently designed and prototyped by the robotics research group of the Polytechnic University of Marche. By means of screw theory and virtual work principle, a computationally efficient model has been built, with the final aim of realising advanced model based controllers. Then a dynamic analysis has been performed in order to point out possible model simplifications that could lead to a more efficient run time implementation

    Dynamic modelling of a 3-CPU parallel robot via screw theory

    Get PDF
    Abstract. The article describes the dynamic modelling of I.Ca.Ro., a novel Cartesian parallel robot recently designed and prototyped by the robotics research group of the Polytechnic University of Marche. By means of screw theory and virtual work principle, a computationally efficient model has been built, with the final aim of realising advanced model based controllers. Then a dynamic analysis has been performed in order to point out possible model simplifications that could lead to a more efficient run time implementation

    Monitoring and modelling interactions between the montagna dei fiori aquifer and the castellano stream (Central Apennines, Italy)

    Get PDF
    Groundwater is the most used water resource around the world, but due to population growth and climate change the alluvial lowland aquifers are often polluted and over-exploited. Thus, more and more frequently water managers need to shift their attention to mountain regions to identify groundwater resources for drinking purposes. This study presents a monitoring and modelling approach that allowed to quantify the inflow from the "Montagna dei Fiori" fractured aquifer to the Castellano stream. Continuous monitoring of flow discharge and temperature during an entire hydrological year (2018-2019) at two monitoring stations along the stream allowed to discriminate between the baseflow (on average, 0.891 m3/s) and the run-off (on average, 0.148 m3/s) components. A hydrogeological basin-wide numerical flow model (using MODFLOW-2005) was set up using information from hydrogeological and geomechanical surveys. The model was calibrated using the daily baseflow observations made in the Castellano stream (R2 = 0.75). The calibrated model allowed to quantify groundwater/surface water interactions. After an automated sensitivity analysis (using MODFLOW-2000), the recharge was found to be the most uncertain parameter, followed by the hydraulic conductivity zonation. This methodology could be applied in other mountain regions where groundwater monitoring networks are usually lacking to improve water resources management

    Tools and Methods for Human Robot Collaboration: Case Studies at i-LABS

    Get PDF
    The collaboration among humans and machines is one of the most relevant topics in the Industry 4.0 paradigm. Collaborative robotics owes part of the enormous impact it has had in small and medium size enterprises to its innate vocation for close cooperation between human operators and robots. The i-Labs laboratory, which is introduced in this paper, developed some case studies in this sense involving different technologies at different abstraction levels to analyse the feasibility of human-robot interaction in common, yet challenging, application scenarios. The ergonomics of the processes, safety of operators, as well as effectiveness of the cooperation are some of the aspects under investigation with the main objective of drawing to these issues the attention from industries who could benefit from them

    Localization from quantum interference in one-dimensional disordered potentials

    Full text link
    We show that the tails of the asymptotic density distribution of a quantum wave packet that localizes in the the presence of random or quasiperiodic disorder can be described by the diagonal term of the projection over the eingenstates of the disordered potential. This is equivalent of assuming a phase randomization of the off-diagonal/interference terms. We demonstrate these results through numerical calculations of the dynamics of ultracold atoms in the one-dimensional speckle and quasiperiodic potentials used in the recent experiments that lead to the observation of Anderson localization for matter waves [Billy et al., Nature 453, 891 (2008); Roati et al., Nature 453, 895 (2008)]. For the quasiperiodic case, we also discuss the implications of using continuos or discrete models.Comment: 5 pages, 3 figures; minor changes, references update
    corecore