53 research outputs found

    Inhomogenized sudden future singularities

    Full text link
    We find that sudden future singularities may also appear in spatially inhomogeneous Stephani models of the universe. They are temporal pressure singularities and may appear independently of the spatial finite density singularities already known to exist in these models. It is shown that the main advantage of the homogeneous sudden future singularities which is the fulfillment of the strong and weak energy conditions may not be the case for inhomogeneous models.Comment: REVTEX 4, 5 pages, no figures, a discussion of the most general case include

    Simple Dynamics on the Brane

    Full text link
    We apply methods of dynamical systems to study the behaviour of the Randall-Sundrum models. We determine evolutionary paths for all possible initial conditions in a 2-dimensional phase space and we investigate the set of accelerated models. The simplicity of our formulation in comparison to some earlier studies is expressed in the following: our dynamical system is a 2-dimensional Hamiltonian system, and what is more advantageous, it is free from the degeneracy of critical points so that the system is structurally stable. The phase plane analysis of Randall-Sundrum models with isotropic Friedmann geometry clearly shows that qualitatively we deal with the same types of evolution as in general relativity, although quantitatively there are important differences.Comment: an improved version, 34 pages, 9 eps figure

    Strings at future singularities

    Full text link
    We discuss the behaviour of strings propagating in spacetimes which allow future singularities of either a sudden future or a Big-Rip type. We show that in general the invariant string size remains finite at sudden future singularities while it grows to infinity at a Big-Rip. This claim is based on the discussion of both the tensile and null strings. In conclusion, strings may survive a sudden future singularity, but not a Big-Rip where they are infinitely stretched.Comment: REVTEX 4.0, 4 pages, no figures, references adde

    Strings in Homogeneous Background Spacetimes

    Full text link
    The string equations of motion for some homogeneous (Kantowski-Sachs, Bianchi I and Bianchi IX) background spacetimes are given, and solved explicitly in some simple cases. This is motivated by the recent developments in string cosmology, where it has been shown that, under certain circumstances, such spacetimes appear as string-vacua. Both tensile and null strings are considered. Generally, it is much simpler to solve for the null strings since then we deal with the null geodesic equations of General Relativity plus some additional constraints. We consider in detail an ansatz corresponding to circular strings, and we discuss the possibility of using an elliptic-shape string ansatz in the case of homogeneous (but anisotropic) backgrounds.Comment: 25 pages, REVTE

    Kantowski-Sachs String Cosmologies

    Get PDF
    We present new exact solutions of the low-energy-effective-action string equations with both dilaton ϕ\phi and axion HH fields non-zero. The background universe is of Kantowski-Sachs type. We consider the possibility of a pseudoscalar axion field hh (H=eϕ(dh)H=e^\phi (dh)^{*}) that can be either time or space dependent. The case of time-dependent hh reduces to that of a stiff perfect-fluid cosmology. For space-dependent hh there is just one non-zero time-space-space component of the axion field HH, and this corresponds to a distinguished direction in space which prevents the models from isotropising. Also, in the latter case, both the axion field HH and its tensor potential BB (H=dBH=dB) are dependent on time and space yet the energy-momentum tensor remains time-dependent as required by the homogeneity of the cosmological model.Comment: 23 pages, REVTEX, 6 figures available on reques

    The Behavior of Kasner Cosmologies with Induced Matter

    Get PDF
    We extend the induced matter model, previously applied to a variety of isotropic cases, to a generalization of Bianchi type-I anisotropic cosmologies. The induced matter model is a 5D Kaluza-Klein approach in which assumptions of compactness are relaxed for the fifth coordinate, leading to extra geometric terms. One interpretation of these extra terms is to identify them as an ``induced matter'' contribution to the stress-energy tensor. In similar spirit, we construct a five dimensional metric in which the spatial slices possess Bianchi type-I geometry. We find a set of solutions for the five dimensional Einstein equations, and determine the pressure and density of induced matter. We comment on the long-term dynamics of the model, showing that the assumption of positive density leads to the contraction over time of the fifth scale factor.Comment: 14 page

    Quantum Tunneling Effect in Oscillating Friedmann Cosmology

    Get PDF
    It is shown that the tunneling effect in quantum cosmology is possible not only at the very beginning or the very end of the evolution, but also at the moment of maximum expansion of the universe. A positive curvature expanding Friedmann universe changes its state of evolution spontaneously and completely, {\it without} any changes in the matter content, avoiding recollapse, and falling into oscillations between the nonzero values of the scale factor. On the other hand, an oscillating nonsingular universe can tunnel spontaneously to a recollapsing regime. The probability of such kind of tunneling is given explicitly. It is inversely related to the amount of nonrelativistic matter (dust), and grows from a certain fixed value to unity if the negative cosmological constant approaches zero.Comment: 18 pages Latex + 2 figures available by fax upon reques

    Multipair contributions to the spin response of nuclear matter

    Get PDF
    We analyse the effect of non-central forces on the magnetic susceptibility of degenerate Fermi systems. These include the presence of contributions from transitions to states containing more than one quasiparticle-quasihole pair, which cannot be calculated within the framework of Landau Fermi-liquid theory, and renormalization of the quasiparticle magnetic moment, as well as explicit non-central contributions to the quasiparticle interaction. Consequently, the relationship between the Landau parameters and the magnetic susceptibility for Fermi systems with non-central forces is considerably more complicated than for systems with central forces. We use sum-rule arguments to place a lower bound on the contribution to the static susceptibility coming from transitions to multipair states

    f(R) Gravity and scalar-tensor theory

    Full text link
    In the present paper we will investigate the relation between scalar-tensor theory and f(R)f(R) theories of gravity. Such studies have been performed in the past for the metric formalism of f(R)f(R) gravity; here we will consider mainly the Palatini formalism, where the metric and the connections are treated as independent quantities. We will try to investigate under which circumstances f(R)f(R) theories of gravity are equivalent to scalar-tensor theory and examine the implications of this equivalence, when it exists.Comment: minor changes to match published version, references adde
    corecore