101,625 research outputs found

    Molecular evolution and morphological speciation in North Atlantic brachiopods (Terebratulina spp.)

    Get PDF
    Morphological and molecular differentiation of western and eastern North Atlantic brachiopods were examined by morphometric analysis of six shell characteristics (<i>n</i>= 144), allozyme electrophoresis at six nuclear gene loci (<i>n</i>= 485), and estimation of nucleotide difference by digestion of mitochondrial DNA (mtDNA) with nine restriction endonucleases (<i>n</i>= 96)

    The bulge luminosity functions in the MSX infrared bands

    Get PDF
    We use an inversion technique to derive the luminosity functions of the Galactic bulge from point source counts extracted from the Midcourse Space Experiment's Point Source Catalog (version 1.2).Comment: 5 pages, 2 figures, to be published in A&

    Charge Transfer in Partition Theory

    Full text link
    The recently proposed Partition Theory (PT) [J.Phys.Chem.A 111, 2229 (2007)] is illustrated on a simple one-dimensional model of a heteronuclear diatomic molecule. It is shown that a sharp definition for the charge of molecular fragments emerges from PT, and that the ensuing population analysis can be used to study how charge redistributes during dissociation and the implications of that redistribution for the dipole moment. Interpreting small differences between the isolated parts' ionization potentials as due to environmental inhomogeneities, we gain insight into how electron localization takes place in H2+ as the molecule dissociates. Furthermore, by studying the preservation of the shapes of the parts as different parameters of the model are varied, we address the issue of transferability of the parts. We find good transferability within the chemically meaningful parameter regime, raising hopes that PT will prove useful in chemical applications.Comment: 12 pages, 16 figure

    Decoherence of adiabatically steered quantum systems

    Get PDF
    We study the effect of Markovian environmental noise on the dynamics of a two-level quantum system which is steered adiabatically by an external driving field. We express the master equation taking consistently into account all the contributions to the lowest non-vanishing order in the coupling to the Markovian environment. We study the master equation numerically and analytically and we find that, in the adiabatic limit, a zero-temperature environment does not affect the ground state evolution. As a physical application, we discuss extensively how the environment affects Cooper pair pumping. The adiabatic ground state pumping appears to be robust against environmental noise. In fact, the relaxation due to the environment is required to avoid the accumulation of small errors from each pumping cycle. We show that neglecting the non-secular terms in the master equation leads to unphysical results, such as charge non-conservation. We discuss also a possible way to control the environmental noise in a realistic physical setup and its influence on the pumping process.Comment: 13 pages, 11 figures. Final versio

    Diffractive energy spreading and its semiclassical limit

    Full text link
    We consider driven systems where the driving induces jumps in energy space: (1) particles pulsed by a step potential; (2) particles in a box with a moving wall; (3) particles in a ring driven by an electro-motive-force. In all these cases the route towards quantum-classical correspondence is highly non-trivial. Some insight is gained by observing that the dynamics in energy space, where nn is the level index, is essentially the same as that of Bloch electrons in a tight binding model, where nn is the site index. The mean level spacing is like a constant electric field and the driving induces long range hopping 1/(n-m).Comment: 19 pages, 11 figs, published version with some improved figure

    Distillation of GHZ states by selective information manipulation

    Full text link
    Methods for distilling maximally entangled tripartite (GHZ) states from arbitrary entangled tripartite pure states are described. These techniques work for virtually any input state. Each technique has two stages which we call primary and secondary distillation. Primary distillation produces a GHZ state with some probability, so that when applied to an ensemble of systems, a certain percentage is discarded. Secondary distillation produces further GHZs from the discarded systems. These protocols are developed with the help of an approach to quantum information theory based on absolutely selective information, which has other potential applications.Comment: minor corrections, especially of some numerical values; conclusions unaffecte

    Comparing persistence diagrams through complex vectors

    Get PDF
    The natural pseudo-distance of spaces endowed with filtering functions is precious for shape classification and retrieval; its optimal estimate coming from persistence diagrams is the bottleneck distance, which unfortunately suffers from combinatorial explosion. A possible algebraic representation of persistence diagrams is offered by complex polynomials; since far polynomials represent far persistence diagrams, a fast comparison of the coefficient vectors can reduce the size of the database to be classified by the bottleneck distance. This article explores experimentally three transformations from diagrams to polynomials and three distances between the complex vectors of coefficients.Comment: 11 pages, 4 figures, 2 table
    corecore