1 research outputs found
Hamiltonian theory of gaps, masses and polarization in quantum Hall states: full disclosure
I furnish details of the hamiltonian theory of the FQHE developed with Murthy
for the infrared, which I subsequently extended to all distances and apply it
to Jain fractions \nu = p/(2ps + 1). The explicit operator description in terms
of the CF allows one to answer quantitative and qualitative issues, some of
which cannot even be posed otherwise. I compute activation gaps for several
potentials, exhibit their particle hole symmetry, the profiles of charge
density in states with a quasiparticles or hole, (all in closed form) and
compare to results from trial wavefunctions and exact diagonalization. The
Hartree-Fock approximation is used since much of the nonperturbative physics is
built in at tree level. I compare the gaps to experiment and comment on the
rough equality of normalized masses near half and quarter filling. I compute
the critical fields at which the Hall system will jump from one quantized value
of polarization to another, and the polarization and relaxation rates for half
filling as a function of temperature and propose a Korringa like law. After
providing some plausibility arguments, I explore the possibility of describing
several magnetic phenomena in dirty systems with an effective potential, by
extracting a free parameter describing the potential from one data point and
then using it to predict all the others from that sample. This works to the
accuracy typical of this theory (10 -20 percent). I explain why the CF behaves
like free particle in some magnetic experiments when it is not, what exactly
the CF is made of, what one means by its dipole moment, and how the comparison
of theory to experiment must be modified to fit the peculiarities of the
quantized Hall problem