49 research outputs found
Mean-field theory for Bose-Hubbard Model under a magnetic field
We consider the superfluid-insulator transition for cold bosons under an
effective magnetic field. We investigate how the applied magnetic field affects
the Mott transition within mean field theory and find that the critical hopping
strength , increases with the applied field. The increase in the
critical hopping follows the bandwidth of the Hofstadter butterfly at the given
value of the magnetic field. We also calculate the magnetization and superfluid
density within mean field theory.Comment: 11 pages, 7 figures, published versio
Coulomb effects on the transport properties of quantum dots in strong magnetic field
We investigate the transport properties of quantum dots placed in strong
magnetic field using a quantum-mechanical ' approach based on the 2D
tight-binding Hamiltonian with direct Coulomb interaction and the
Landauer-B\"{u}ttiker (LB) formalism. The electronic transmittance and the Hall
resistance show Coulomb oscillations and also prove multiple addition
processes. We identify this feature as the 'bunching' of electrons observed in
recent experiments and give an elementary explanation in terms of spectral
characteristics of the dot. The spatial distribution of the added electrons may
distinguish between edge and bulk states and it has specific features for
bunched electrons. The dependence of the charging energy on the number of
electrons is discussed for strong and vanishing magnetic field. The crossover
from the tunneling to quantum Hall regime is analyzed in terms of dot-lead
coupling.Comment: 17 pages,8 figures,Revtex,submitted to Physical Review
Spin magnetization of strongly correlated electron gas confined in a two-dimensional finite lattice
The influence of disorder and interaction on the ground state polarization of
the two-dimensional (2D) correlated electron gas is studied by numerical
investigations of unrestricted Hartree-Fock equations. The ferromagnetic ground
state is found to be plausible when the electron number is lowered and the
interaction and disorder parameters are suitably chosen. For a finite system at
constant electronic density the disorder induced spin polarization is cut off
when the electron orbitals become strongly localized to the individual network
sites. The fluctuations of the interaction matrix elements are calculated and
brought out as favoring the ferromagnetic instability in the extended and weak
localization regime. The localization effect of the Hubbard interaction term is
discussed.Comment: 7 pages, 9 figure
Investigation of the Δn = 0 selection rule in Gamow-Teller transitions : The β-decay of 207 Hg
Gamow-Teller β decay is forbidden if the number of nodes in the radial wave functions of the initial and final states is different. This Δn=0 requirement plays a major role in the β decay of heavy neutron-rich nuclei, affecting the nucleosynthesis through the increased half-lives of nuclei on the astrophysical r-process pathway below both Z=50 (for N>82) and Z=82 (for N>126). The level of forbiddenness of the Δn=1ν1g 9/2 →π0g 7/2 transition has been investigated from the β − decay of the ground state of 207 Hg into the single-proton-hole nucleus 207 Tl in an experiment at the ISOLDE Decay Station. From statistical observational limits on possible γ-ray transitions depopulating the π0g 7/2 −1 state in 207 Tl, an upper limit of 3.9×10 −3 % was obtained for the probability of this decay, corresponding to logft>8.8 within a 95% confidence limit. This is the most stringent test of the Δn=0 selection rule to date