1,764 research outputs found

    Planning the forest transport systems based on the principles of sustainable development of territories

    Get PDF
    The article identifies a new method of dynamic modeling in the design of the transport system in the forest fund (TSFF), which is based on economic and mathematical modeling and fuzzy logic tools. The combination of the indicated methods is designed to reduce the disadvantages of their use and increase the benefits. The article substantiates the choice of assessing the forecast level of the impact of risks on the activities of forestry enterprises (the method of expert assessments), using the methodological tools of fuzzy logic. The indicated method makes it possible to take into account a large variety of risk factors of the internal and external environment. At the same time, methodological aspects of fuzzy logic make it possible to formulate a quantitative assessment of qualitative indicators. The article substantiates the choice of tools for economic and mathematical modeling in order to state the design problem of the planned TSFF. Since the indicated method enables the formalization of the functioning of the timber transport system in the given conditions. The article presents a developed model that correctly takes into account the influence of risk factors when planning a TSFF, through the combination of fuzzy logic methods and economic and mathematical modeling. The advantages of the developed model include: considering the multivariance of material flows, vehicles, points of overload, etc.; automated processing of input parameters and effective data; using the model for forecasting, i.e. the possibility of deriving a fuzzy estimate of the efficiency of the timber transport system by identifying cause-effect relationships between the modeling object and the influence of risk factors on its functioning. Β© 2019 IOP Publishing Ltd

    ВивчСння Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡ— активності ΠΌΠ°Π·Π΅ΠΉ Π· Π»Ρ–ΠΏΠΎΡ„Ρ–Π»ΡŒΠ½ΠΈΠΌ Скстрактом ΠΏΠ°Π³ΠΎΠ½Ρ–Π² Salix viminalis L.

    Get PDF
    The increase in the number of purulent-inflammatory diseases and postoperative purulent complications, as well as deterioration of the results of treating purulent surgical infections, including the formation of antibiotic-resistant strains of microorganisms, leads to the search for effective antimicrobial substances. Plant extracts can be used for these purposes.Aim. To expand the range of domestic ointments containing substances of natural origin as active pharmaceutical ingredients (API). To achieve the aim the team of authors has studied the possibility of developing an ointment on a hydrophilic base using the lipophilic extract from Salix viminalis shoots as API and the analysis of its antimicrobial properties.Materials and methods. As the study object the samples of semisolid medicinal forms containing the lipophilic extract from Salix viminalis shoots in the concentration from 1 % to 10 % on a hydrophilic ointment base with Tween-80, propylene glycol (PG) solution and an alloy of polyethylene oxides (PEO) 400 and 1500 were used. As the method of the samples efficiency control the method of diffusion into agar with the growth inhibition zone determination was chosen. Staphylococcus aureus ATCC 25923, Esherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Bacillus subtilis ATCC 6633, Proteus vulgaris ATCC 4636 and Candida albicans ATCC 885-653 strains were used.Results and discussion. The studies conducted have proven the presence of the antimicrobial activity in the samples of ointments on a complex hydrophilic base. A gradual increase in the antimicrobial activity of ointments has been found with an increase in the concentration of the extract from Salix viminalis shoots. The results obtained can be used as the base for further biopharmaceutical research and the aim implementation.Conclusions. As a result of the studies conducted the optimal concentration of the Salix viminalis extract in the ointment composition on the hydrophilic base has been determined. The composition developed exhibits a pronounced antimicrobial activity against strains of Staphylococcus aureus, Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Basillus subtilis and Candida albicans. The ointment can be used to treat infectious complications of wounds.ВозрастаниС количСства Π³Π½ΠΎΠΉΠ½ΠΎ-Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΈ послСопСрационных Π³Π½ΠΎΠΉΠ½Ρ‹Ρ… ослоТнСний, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡƒΡ…ΡƒΠ΄ΡˆΠ΅Π½ΠΈΠ΅ ΠΎΠ±Ρ‰ΠΈΡ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² лСчСния Π³Π½ΠΎΠΉΠ½Ρ‹Ρ… хирургичСских ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΉ, Π² Ρ‚ΠΎΠΌ числС ΠΈΠ·-Π·Π° формирования антибиотикорСзистСнтных ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΎΠ±ΡƒΡΠ»ΠΎΠ²Π»ΠΈΠ²Π°ΡŽΡ‚ поиск эффСктивных Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½Ρ‹Ρ… вСщСств. Π’Π°ΠΊΠΈΠΌΠΈ вСщСствами ΠΌΠΎΠ³ΡƒΡ‚ Π²Ρ‹ΡΡ‚ΡƒΠΏΠ°Ρ‚ΡŒ Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ экстракты.ЦСлью ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ являСтся Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ ассортимСнта отСчСствСнных ΠΌΠ°Π·Π΅ΠΉ, содСрТащих Π² качСствС Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… фармацСвтичСских ΠΈΠ½Π³Ρ€Π΅Π΄ΠΈΠ΅Π½Ρ‚ΠΎΠ² (АЀИ) субстанции Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ происхоТдСния. Для Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ поставлСнной Ρ†Π΅Π»ΠΈ ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²ΠΎΠΌ Π°Π²Ρ‚ΠΎΡ€ΠΎΠ² Π±Ρ‹Π»Π° ΠΈΠ·ΡƒΡ‡Π΅Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΌΠ°Π·ΠΈ Π½Π° Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΉ основС с использованиСм Π² качСствС АЀИ Π»ΠΈΠΏΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ экстракта ΠΏΠΎΠ±Π΅Π³ΠΎΠ² ΠΈΠ²Ρ‹ ΠΏΡ€ΡƒΡ‚ΠΎΠ²ΠΈΠ΄Π½ΠΎΠΉ ΠΈ Π°Π½Π°Π»ΠΈΠ· Π΅Π΅ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½Ρ‹Ρ… свойств.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π’ качСствС ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° исслСдований ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ мягких лСкарствСнных Ρ„ΠΎΡ€ΠΌ, содСрТащих Π»ΠΈΠΏΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ экстракт ΠΏΠΎΠ±Π΅Π³ΠΎΠ² ΠΈΠ²Ρ‹ ΠΏΡ€ΡƒΡ‚ΠΎΠ²ΠΈΠ΄Π½ΠΎΠΉ (Salix viminalis L.) Π² ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΎΡ‚ 1 % Π΄ΠΎ 10 % Π½Π° Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΌΠ°Π·Π΅Π²ΠΎΠΉ основС, содСрТащСй Ρ‚Π²ΠΈΠ½-80, раствор пропилСнгликоля (ΠŸΠ“) ΠΈ сплав полиэтилСноксидов (ΠŸΠ•Πž) 400 ΠΈ 1500. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ контроля эффСктивности ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Π²Ρ‹Π±Ρ€Π°Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΈ Π² Π°Π³Π°Ρ€ с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ Π·ΠΎΠ½Ρ‹ Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΈ роста ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ². Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΡˆΡ‚Π°ΠΌΠΌΡ‹ Staphylococcus aureus ATCC 25923, Esсherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Bacillus subtilis ATCC 6633, Proteus vulgaris ATCC 4636 ΠΈ Candida albicans ATCC 885-653.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΈΡ… обсуТдСниС. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΌΠΈ исслСдованиями Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠΉ активности исслСдуСмых ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΌΠ°Π·Π΅ΠΉ Π½Π° комплСксной Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΉ основС. УстановлСно постСпСнноС возрастаниС Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠΉ активности ΠΌΠ°Π·Π΅ΠΉ ΠΏΡ€ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ экстракта ΠΈΠ²Ρ‹ ΠΏΡ€ΡƒΡ‚ΠΎΠ²ΠΈΠ΄Π½ΠΎΠΉ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π±ΡƒΠ΄ΡƒΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Π² качСствС Π±Π°Π·Ρ‹ для провСдСния Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠΈΡ… биофармацСвтичСских исслСдований ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ поставлСнной Ρ†Π΅Π»ΠΈ.Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… исслСдований установлСно ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΡƒΡŽ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡŽ экстракта ΠΈΠ²Ρ‹ ΠΏΡ€ΡƒΡ‚ΠΎΠ²ΠΈΠ΄Π½ΠΎΠΉ Π² составС ΠΌΠ°Π·ΠΈ Π½Π° Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΉ основС. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ состав проявляСт Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΡƒΡŽ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ ΡˆΡ‚Π°ΠΌΠΌΠ°ΠΌ Staphylococcus aureus, Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Basillus subtilis ΠΈ Candida albicans. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Π°Ρ мазь ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использована для лСчСния ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ослоТнСний Ρ€Π°Π½.Зростання ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– Π³Π½Ρ–ΠΉΠ½ΠΎ-Π·Π°ΠΏΠ°Π»ΡŒΠ½ΠΈΡ… Π·Π°Ρ…Π²ΠΎΡ€ΡŽΠ²Π°Π½ΡŒ Ρ– післяопСраційних Π³Π½Ρ–ΠΉΠ½ΠΈΡ… ΡƒΡΠΊΠ»Π°Π΄Π½Π΅Π½ΡŒ, Π° Ρ‚Π°ΠΊΠΎΠΆ ΠΏΠΎΠ³Ρ–Ρ€ΡˆΠ΅Π½Π½Ρ Π·Π°Π³Π°Π»ΡŒΠ½ΠΈΡ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ–Π² лікування Π³Π½Ρ–ΠΉΠ½ΠΈΡ… Ρ…Ρ–Ρ€ΡƒΡ€Π³Ρ–Ρ‡Π½ΠΈΡ… Ρ–Π½Ρ„Π΅ΠΊΡ†Ρ–ΠΉ, Π² Ρ‚ΠΎΠΌΡƒ числі завдяки Ρ„ΠΎΡ€ΠΌΡƒΠ²Π°Π½Π½ΡŽ Π°Π½Ρ‚ΠΈ-біотикорСзистСнтних ΡˆΡ‚Π°ΠΌΡ–Π² ΠΌΡ–ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡ–Π² Π·ΡƒΠΌΠΎΠ²Π»ΡŽΡŽΡ‚ΡŒ ΠΏΠΎΡˆΡƒΠΊ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΈΡ… Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½. Π’Π°ΠΊΠΈΠΌΠΈ Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½Π°ΠΌΠΈ ΠΌΠΎΠΆΡƒΡ‚ΡŒ виступати рослинні Скстракти.ΠœΠ΅Ρ‚ΠΎΡŽ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎΡ— Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ Ρ” Ρ€ΠΎΠ·ΡˆΠΈΡ€Π΅Π½Π½Ρ асортимСнту вітчизняних ΠΌΠ°Π·Π΅ΠΉ, Ρ‰ΠΎ ΠΌΡ–ΡΡ‚ΡΡ‚ΡŒ Ρƒ якості Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… Ρ„Π°Ρ€ΠΌΠ°Ρ†Π΅Π²Ρ‚ΠΈΡ‡Π½ΠΈΡ… Ρ–Π½Π³Ρ€Π΅Π΄Ρ–Ρ”Π½Ρ‚Ρ–Π² (АЀІ) субстанції рослинного походТСння. Для Ρ€Π΅Π°Π»Ρ–Π·Π°Ρ†Ρ–Ρ— поставлСної ΠΌΠ΅Ρ‚ΠΈ ΠΊΠΎΠ»Π΅ΠΊΡ‚ΠΈΠ²ΠΎΠΌ Π°Π²Ρ‚ΠΎΡ€Ρ–Π² Π±ΡƒΠ»ΠΎ Π²ΠΈΠ²Ρ‡Π΅Π½ΠΎ ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ Ρ€ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠΈ ΠΌΠ°Π·Ρ– Π½Π° Π³Ρ–Π΄Ρ€ΠΎΡ„Ρ–Π»ΡŒΠ½Ρ–ΠΉ основі Π· використанням Ρƒ якості АЀІ Π»Ρ–ΠΏΠΎΡ„Ρ–Π»ΡŒΠ½ΠΎΠ³ΠΎ Скстракту ΠΏΠ°Π³ΠΎΠ½Ρ–Π² Salix viminalis L. Ρ‚Π° Π°Π½Π°Π»Ρ–Π· Ρ—Ρ— Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΈΡ… властивостСй.ΠœΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»ΠΈ Ρ‚Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ. Π£ якості об’єкту Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ використано Π·Ρ€Π°Π·ΠΊΠΈ м’яких Π»Ρ–ΠΊΠ°Ρ€ΡΡŒΠΊΠΈΡ… Ρ„ΠΎΡ€ΠΌ, Ρ‰ΠΎ ΠΌΡ–ΡΡ‚ΡΡ‚ΡŒ Π»Ρ–ΠΏΠΎΡ„Ρ–Π»ΡŒΠ½ΠΈΠΉ Скстракт Π· ΠΏΠ°Π³ΠΎΠ½Ρ–Π² Π²Π΅Ρ€Π±ΠΈ ΠΏΡ€ΡƒΡ‚ΠΎΠΏΠΎΠ΄Ρ–Π±Π½ΠΎΡ— (Salix viminalis L.) Π² ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— Π²Ρ–Π΄ 1 % Π΄ΠΎ 10 % Π½Π° Π³Ρ–Π΄Ρ€ΠΎ-Ρ„Ρ–Π»ΡŒΠ½Ρ–ΠΉ ΠΌΠ°Π·Π΅Π²Ρ–ΠΉ основі, яка ΠΌΡ–ΡΡ‚ΠΈΡ‚ΡŒ Ρ‚Π²Ρ–Π½-80, Ρ€ΠΎΠ·Ρ‡ΠΈΠ½ ΠΏΡ€ΠΎΠΏΡ–Π»Π΅Π½Π³Π»Ρ–ΠΊΠΎΠ»ΡŽ (ΠŸΠ“) Ρ‚Π° сплав поліСтилСноксидів (ΠŸΠ•Πž) 400 Ρ‚Π° 1500. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŽ СфСктивності Π·Ρ€Π°Π·ΠΊΡ–Π² ΠΎΠ±Ρ€Π°Π½ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π΄ΠΈΡ„ΡƒΠ·Ρ–Ρ— Π² Π°Π³Π°Ρ€ Π· визначСнням Π·ΠΎΠ½ΠΈ Π·Π°Ρ‚Ρ€ΠΈΠΌΠΊΠΈ росту ΠΌΡ–ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡ–Π². Використані ΡˆΡ‚Π°ΠΌΠΈ Staphylococcus aureus ATCC 25923, Esсherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Bacillus subtilis ATCC 6633, Proteus vulgaris ATCC 4636 Ρ‚Π° Candida albicans ATCC 885-653.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Ρ‚Π° Ρ—Ρ… обговорСння. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΌΠΈ дослідТСннями Π΄ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π½Π°ΡΠ²Π½Ρ–ΡΡ‚ΡŒ Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡ— активності дослідТуваних Π·Ρ€Π°Π·ΠΊΡ–Π² ΠΌΠ°Π·Π΅ΠΉ Π½Π° комплСксній Π³Ρ–Π΄Ρ€ΠΎΡ„Ρ–Π»ΡŒΠ½Ρ–ΠΉ основі. ВстановлСно ΠΏΠΎΠ²Ρ–Π»ΡŒΠ½Π΅ зростання Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡ— активності ΠΌΠ°Π·Π΅ΠΉ Π· підвищСнням ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— Скстракту Π²Π΅Ρ€Π±ΠΈ ΠΏΡ€ΡƒΡ‚ΠΎΠΏΠΎΠ΄Ρ–Π±Π½ΠΎΡ—. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Π±ΡƒΠ΄ΡƒΡ‚ΡŒ використані Ρƒ якості Π±Π°Π·ΠΈ для провСдСння ΠΏΠΎΠ΄Π°Π»ΡŒΡˆΠΈΡ… Π±Ρ–ΠΎΡ„Π°Ρ€ΠΌΠ°Ρ†Π΅Π²Ρ‚ΠΈΡ‡Π½ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ Ρ– ΠΏΠΎΠ΄Π°Π»ΡŒΡˆΠΎΡ— Ρ€Π΅Π°Π»Ρ–Π·Π°Ρ†Ρ–Ρ— поставлСної ΠΌΠ΅Ρ‚ΠΈ.Висновки. Π£ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ– ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ встановлСно ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρƒ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–ΡŽ Скстракту Π²Π΅Ρ€Π±ΠΈ ΠΏΡ€ΡƒΡ‚ΠΎΠΏΠΎΠ΄Ρ–Π±Π½ΠΎΡ— Ρƒ складі ΠΌΠ°Π·Ρ– Π½Π° Π³Ρ–Π΄Ρ€ΠΎΡ„Ρ–Π»ΡŒΠ½Ρ–ΠΉ основі. Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½Π° мазь проявляє Π²ΠΈΡ€Π°ΠΆΠ΅Π½Ρƒ Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ ΠΏΠΎ Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½ΡŽ Π΄ΠΎ ΡˆΡ‚Π°ΠΌΡ–Π² Staphylococcus aureus, Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Basillus subtilis Ρ‚Π° Candida albicans Ρ– ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ використана для лікування Ρ–Π½Ρ„Π΅ΠΊΡ†Ρ–ΠΉΠ½ΠΎ ускладнСних Ρ€Π°Π½

    Universal fractal structures in the weak interaction of solitary waves in generalized nonlinear Schr\"{o}dinger equations

    Full text link
    Weak interactions of solitary waves in the generalized nonlinear Schr\"{o}dinger equations are studied. It is first shown that these interactions exhibit similar fractal dependence on initial conditions for different nonlinearities. Then by using the Karpman-Solov'ev method, a universal system of dynamical equations is derived for the velocities, amplitudes, positions and phases of interacting solitary waves. These dynamical equations contain a single parameter, which accounts for the different forms of nonlinearity. When this parameter is zero, these dynamical equations are integrable, and the exact analytical solutions are derived. When this parameter is non-zero, the dynamical equations exhibit fractal structures which match those in the original wave equations both qualitatively and quantitatively. Thus the universal nature of fractal structures in the weak interaction of solitary waves is analytically established. The origin of these fractal structures is also explored. It is shown that these structures bifurcate from the initial conditions where the solutions of the integrable dynamical equations develop finite-time singularities. Based on this observation, an analytical criterion for the existence and locations of fractal structures is obtained. Lastly, these analytical results are applied to the generalized nonlinear Schr\"{o}dinger equations with various nonlinearities such as the saturable nonlinearity, and predictions on their weak interactions of solitary waves are made.Comment: 22pages, 15 figure

    Magnetic field dependence of antiferromagnetic resonance in NiO

    Get PDF
    We report on measurements of magnetic field and temperature dependence of antiferromagnetic resonances in the prototypical antiferromagnet NiO. The frequencies of the magnetic resonances in the vicinity of 1 THz have been determined in the time-domain via time-resolved Faraday measurements after selective excitation by narrow-band superradiant terahertz (THz) pulses at temperatures down to 3 K and in magnetic fields up to 10 T. The measurements reveal two antiferromagnetic resonance modes, which can be distinguished by their characteristic magnetic field dependencies. The nature of the two modes is discussed by comparison to an eight-sublattice antiferromagnetic model, which includes superexchange between the next-nearest-neighbor Ni spins, magnetic dipolar interactions, cubic magneto-crystalline anisotropy, and Zeeman interaction with the external magnetic field. Our study indicates that a two-sublattice model is insufficient for the description of spin dynamics in NiO, while the magnetic-dipolar interactions and magneto-crystalline anisotropy play important roles

    Sub-milliarcsecond Imaging of Quasars and Active Galactic Nuclei. IV. Fine Scale Structure

    Get PDF
    We have used VLBA fringe visibility data obtained at 15 GHz to examine the compact structure in 250 extragalactic radio sources. For 171 sources in our sample, more than half of the total flux density seen by the VLBA remains unresolved on the longest baselines. There are 163 sources in our list with a median correlated flux density at 15 GHz in excess of 0.5 Jy on the longest baselines. For about 60% of the sources, we have at least one observation in which the core component appears unresolved (generally smaller than 0.05 mas) in one direction, usually transverse to the direction into which the jet extends. BL Lacs are on average more compact than quasars, while active galaxies are on average less compact. Also, in an active galaxy the sub-milliarcsecond core component tends to be less dominant. IDV sources typically have a more compact, more core-dominated structure on sub-milliarcsecond scales than non-IDV sources, and sources with a greater amplitude of intra-day variations tend to have a greater unresolved VLBA flux density. The objects known to be GeV gamma-ray loud appear to have a more compact VLBA structure than the other sources in our sample. This suggests that the mechanisms for the production of gamma-ray emission and for the generation of compact radio synchrotron emitting features are related. The brightness temperature estimates and lower limits for the cores in our sample typically range between 10^11 and 10^13 K, but they extend up to 5x10^13 K, apparently in excess of the equipartition brightness temperature, or the inverse Compton limit for stationary synchrotron sources. The largest component speeds are observed in radio sources with high observed brightness temperatures, as would be expected from relativistic beaming (abridged).Comment: 31 pages, 13 figures, 4 tables, accepted for publication in the Astronomical Journal; minor changes to the text are mad

    Deformation of LeBrun's ALE metrics with negative mass

    Full text link
    In this article we investigate deformations of a scalar-flat K\"ahler metric on the total space of complex line bundles over CP^1 constructed by C. LeBrun. In particular, we find that the metric is included in a one-dimensional family of such metrics on the four-manifold, where the complex structure in the deformation is not the standard one.Comment: 20 pages, no figure. V2: added two references, filled a gap in the proof of Theorem 1.2. V3: corrected a wrong statement about Kuranishi family of a Hirzebruch surface stated in the last paragraph in the proof of Theorem 1.2, and fixed a relevant error in the proof. Also added a reference [24] about Kuranishi family of Hirzebruch surface
    • …
    corecore